Orateur
M.
Robin Deeley
Description
Inspired by naturally occurring geometric examples, Baaj and Julg defined the notion of an unbounded cycle in KK-theory. Likewise, based on operators associated to manifolds with boundary, Hilsum defined the notion of a bordism in the context of unbounded KK-theory. I will discuss joint work with Magnus Goffeng and Bram Mesland in which, we defined an abelian group that is essentially unbounded KK-cycles modulo Hilsum's notion of bordism. This group maps to the standard Kasparov group via the bounded transform and in the commutative case can be related to the geometric model for K-homology due to Baum and Douglas.