10–13 juin 2025
Institut de Mathématiques de Toulouse
Fuseau horaire Europe/Paris

Computation of linear subvarieties in the moduli space of translation surfaces and their multi-scale boundary

13 juin 2025, 10:25
50m
Amphithéatre Schwartz (Institut de Mathématiques de Toulouse)

Amphithéatre Schwartz

Institut de Mathématiques de Toulouse

Université Paul Sabatier 118, route de Narbonne - Bat. 1R3 31062 Toulouse Cedex 9

Orateur

Vincent Delecroix (CNRS - Université de Bordeaux)

Description

A translation surface is a surface endowed with
an atlas whose change of charts are translations. Fundamental
examples include the flat tori $\mathbb{C} / \Lambda$. A translation
surface comes with a one-parameter family of linear flows, one
for each direction in $\mathbb{C}$. Translation surfaces naturally
appear when considering billiard flows in rational polygons.

The main focus of the talk are the
$\operatorname{GL}^+_2(\mathbb{R})$-action on the moduli space
of translation surfaces and the multi-scale compactification
of $\operatorname{GL}^+_2(\mathbb{R})$-orbit closures.
After presenting the relevance of
$\operatorname{GL}^+_2(\mathbb{R})$-orbit closures in the
understanding of linear flows, I will describe how these
objects are amenable to efficient computations (in the sense
of computer programs).

This talk will be based on joint works with Julian Rüth, Kai Fu
and Bradley Zykoski.

Documents de présentation

Aucun document.