Algèbre, géométrie, topologie

Conjecture de Fried pour des fibrés admissibles

par Shu Shen (Jussieu)

Europe/Paris
Salle de conférences

Salle de conférences

Description

La relation entre le spectre du laplacien et les géodésiques fermées sur une variété riemannienne compacte est l'un des thèmes centraux de la géométrie différentielle. Fried a conjecturé que la torsion analytique, qui est un produit alterné de déterminants régularisés des laplaciens, est égale à la valeur en zéro de la fonction zêta dynamique. Dans cet exposé, je montrerai la conjecture de Fried sur des espaces localement symétriques tordus par un fibré vectoriel plat acyclique obtenu par une représentation du groupe de Lie sous-jacent. Cela généralise les résultats de moi-même pour les fibrés unitaires, et les résultats de Brocker, Muller et Wotzker sur les variétés hyperboliques.