Orateur
Rayan Fahs
(Université Toulouse III - Paul Sabatier)
Description
In this talk, we will discuss the spectral analysis of the Robin Laplacian on a smooth bounded two-dimensional domain in the presence of a constant magnetic field. In the semi-classical limit, I will explain how to get a uniform description of the spectrum located between the Landau levels. The corresponding eigenfunctions, called edge states, are exponentially localized near the boundary. By means of a microlocal
dimensional reduction, I will explain how to derive a very precise Weyl law, and also how to simultaneously refine old results about the low-lying eigenvalues in the Robin case and recent ones about edge states in the Dirichlet case.