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Robin magnetic Laplacian

Let © C R? be a smooth, bounded and simply connected domain. We define the Robin
magnetic Laplacian in L>(Q) by

% = (—ihV —A)?
with domain
Dom(.%,) = {w € HX(Q) : —ihv - (—ihV —A)y = yh2 y on IQ}
where
— A= (A},Ay) € H(Q,R?) is the magnetic potential,
— V is the unit outward normal vector of 9Q,
— y€RU{+oo} is a parameter.

We assume that the magnetic field is constant equal to 1 (and associated with a smooth
vector potential A):
B .= 81A2782A1 =1.
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> Goal:

o Describe the eigenvalues (A;(,7))>1 in the semiclassical limit /2 — 0.
o Presenting techniques to pass from energies defined in Q to effective energies

defined in simpler sets.
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@ Study of superconductivity:

> Study the minimizers of Ginzburg-Landau functional.

@ S. Fournais and B. Helffer. Spectral methods in surface superconductivity, volume 77 of
Progress in Nonlinear Differential Equations and their Applications, Birkhduser Boston,
2010.

> The estimate of critical temperature/critical field.

@ Relation to microlocal analysis and Classical mechanics of charged particles
submitted to magnetic fields and its quantization.

@ N. Raymond. Bound states of the magnetic Schrédinger operator, volume 27 of EMS Tracts in
Mathematics. European Mathematical Society (EMS), Ziirich, 2017.

@ Extend our knowledge of the spectrum of magnetic Schrodinger operators in the
semiclassical limit: finding normal forms for magnetic operators, describing the
tunneling effect ...
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Robin-de Gennes operator

Our results are expressed in terms of the eigenvalues of de Gennes operator with Robin
boundary condition acting as

on the domain
Dom(H[y,0]) = {u € B (R+) :4/(0) = yu(0) }

Its eigenvalues are denoted by (i, (7,0))u>1-

Proposition (Dauge-Helffer'93, De Biévre-Pulé'99, Kachmar’'06, Fahs'23)

Let us fixn > 1. When y € R, the function u,(7,-) is analytic and
i = too i —n—
61'"“4(}.“71(% G) = +oo, GETDCMI(% 0)=2n—1.

Moreover, 1, (7V,-) has a unique minimum attained at o =&,_(y), but not attained at
infinity. This minimum is non-degenerate. The function W, (7,-) is decreasing on
(—o0,&,-1(7)) and increasing on (&,_1(7),+e°). In addition, we have, for all n > 2,

2n—3 <0y = inf fn(7,0) <20 1.
oeR

When y = +oo, that is when the Robin condition is replaced by the Dirichlet condition,
Un (oo, ) is still smooth, but now decreasing from oo to 2n—1.




Robin-de Gennes operator

Eigenvalues of H[y, 0] for Robin parameter y = —1
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Robin-de Gennes operator

Eigenvalues of H[y, 0] for Robin parameter y = —1
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An overview of the known results

> The case ¥ =0 has been studied a lot in the last 25 years, see especially the seminal
work Helffer-Morame’01 where a two-term expansion of the groundstate energy is
obtained by variational means (test functions, partition of the unity), and a
tunneling result has even been proved recently.

ﬁ B. Helffer and A. Morame. Magnetic bottles in connection with superconductivity.J. Funct.
Anal.,185(2):604-680, 2001.

ﬁ V. Bonnaillie-Noél, F. Hérau, and N. Raymond. Purely magnetic tunneling effect in two
dimensions. Invent. Math., 227(2), 2022.
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B A. Kachmar. On the ground state energy for a magnetic Schrédinger operator and the effect of
the De Gennes boundary condition. Journal of mathematical physics, 47(7) :072106, 2006.

9 /21



An overview of the known results

> The case ¥ =0 has been studied a lot in the last 25 years, see especially the seminal
work Helffer-Morame’01 where a two-term expansion of the groundstate energy is
obtained by variational means (test functions, partition of the unity), and a
tunneling result has even been proved recently.

ﬁ B. Helffer and A. Morame. Magnetic bottles in connection with superconductivity.J. Funct.
Anal.,185(2):604-680, 2001.

ﬁ V. Bonnaillie-Noél, F. Hérau, and N. Raymond. Purely magnetic tunneling effect in two
dimensions. Invent. Math., 227(2), 2022.

> When 7 # 0, only the smallest eigenvalue has been estimated.

M(v.h) = G[O](y)h*’(maxc(y)h% +()(h%),

h—0

where Kmax is the maximum curvature of the boundary, and C(y) > 0.

B A. Kachmar. On the ground state energy for a magnetic Schrédinger operator and the effect of
the De Gennes boundary condition. Journal of mathematical physics, 47(7) :072106, 2006.

#y Goal: If we consider the spectrum in a given spectral window (not only the
lowest eigenvalues), we want to study the spectral properties of .%,
in the semiclassical regime 1 — 0 and for y € RU {+eo}.
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Magnetic Laplacian on the Euclidean plane

If we forget the boundary condition, the operator acts as the magnetic Laplacian
with constant magnetic field, on the Euclidean plane R?

L = —(hV —iA).

The spectrum of this so-called “bulk” operator is well-known and made of the

famous Landau levels
{(2n—1)h,n > 1},

which are infinitely degenerate eigenvalues.

This suggests considering the potential eigenvalues of %), in a window of the form
[ha,hb] with:

e 2n—1<a<b<2n+1 for some integer n > 1.

e a= —oo for n=0.
The corresponding eigenfunctions should be localized near the boundary.

A In fact, this decay does not really follow from the usual Agmon estimates, since
we want to consider eigenvalues between two consecutive Landau levels.

10 /21



© Main result and applications

11 /21



Main result: preliminaries

> The usual class Sg2(1) given by

Sp2(1) ={p € € (R}5): Yo € N* 3Cq > 0:|9%p| < Cye}

12 /21



Main result: preliminaries

> The usual class Sg2(1) given by
Sp2(1) ={p € € (R}5): Yo € N* 3Cq > 0:|9%p| < Cye}

> Let us recall the formula for the Weyl quantization:

1 i x+
OpY PIY() =5 [ I p (Tyn) y()dydn, Yy e Z(R),

which defines, in virtue of the Calderén-Vaillancourt theorem, a bounded operator
from L*(R) to L*(R).

12 /21



Main result: preliminaries

> The usual class Sg2(1) given by
Sp2(1) ={p € € (R}5): Yo € N* 3Cq > 0:|9%p| < Cye}

> Let us recall the formula for the Weyl quantization:

1 i x+
OpY PIY() =5 [ I p (Tyn) y()dydn, Yy e Z(R),

which defines, in virtue of the Calderén-Vaillancourt theorem, a bounded operator
from L*(R) to L*(R).

> Let Toy =R/2LZ, and L*(Ty;) be the subset of L2 (R) of 2L-periodic functions,
equipped with the usual L norm on [0,2L)].

12 /21



Main result: preliminaries

> The usual class Sg2(1) given by
Sp2(1) ={p € € (R}5): Yo € N* 3Cq > 0:|9%p| < Cye}

> Let us recall the formula for the Weyl quantization:

1 i x+
OpY PIY() =5 [ I p (Tyn) y()dydn, Yy e Z(R),

which defines, in virtue of the Calderén-Vaillancourt theorem, a bounded operator
from L*(R) to L*(R).

> Let To; =R/2L7Z, and L*(T5;) be the subset of L2

ioc R) of 2L-periodic functions,
equipped with the usual L norm on [0,2L)].

> Let p € S, xr(1), i.e. p € Sp2(1) and is 2L-periodic in its first variable s.

12 /21



Main result: preliminaries

> The usual class Sg2(1) given by
Sp2(1) ={p € € (R}5): Yo € N* 3Cq > 0:|9%p| < Cye}

> Let us recall the formula for the Weyl quantization:

1 i x+
OpY PIY() =5 [ I p (Tyn) y()dydn, Yy e Z(R),

which defines, in virtue of the Calderén-Vaillancourt theorem, a bounded operator
from L*(R) to L*(R).

> Let To; =R/2L7Z, and L*(T5;) be the subset of L2

ioc R) of 2L-periodic functions,
equipped with the usual L norm on [0,2L)].

> Let p € S, xr(1), i.e. p € Sp2(1) and is 2L-periodic in its first variable s.

> If p € ST, xr(1), then Op;lvp defines a bounded operator from eie'Lz(’]I‘gL) to
L’le'Lz(TzL).

12 /21



Main result: preliminaries

> The usual class Sg2(1) given by
Sp2(1) ={p € € (R}5): Yo € N* 3Cq > 0:|9%p| < Cye}

> Let us recall the formula for the Weyl quantization:
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OpY PIY() =5 [ I p (Tyn) y()dydn, Yy e Z(R),

which defines, in virtue of the Calderén-Vaillancourt theorem, a bounded operator
from L*(R) to L*(R).

> Let Toy =R/2LZ, and L*(Ty;) be the subset of L2 (R) of 2L-periodic functions,
equipped with the usual L norm on [0,2L)].
> Let p € S, xr(1), i.e. p € Sp2(1) and is 2L-periodic in its first variable s.

> If p € ST, xr(1), then Op;lvp defines a bounded operator from eie'Lz(’]I‘gL) to
L’le'Lz(TzL).

> To shorten the notation, we will sometimes write p% instead of Op}l"’p.
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Main result

The spectrum of %, in [ha,hb] coincides with that of h90%;, modulo & (h?), where

m\lN 0o - 0
0 my
My, == 2
: . 0
0 0 myW

is a bounded operator acting diagonally on ¢/®) L2(T,;)N. Here

Q
0(h) = ﬁ,

and each mXV is an h? -pseudodifferential operator with symbol in St,, «r(1).
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Main result

Let us denote by (s,0) the (canonical) variables in Ty x R. Then, we have:
— the principal symbol ofm)(N is Lo Eo(0);

— its subprincipal symbol is —k(s)Cy 0 Eo(0) with

Cr(o) = ((r —0)t2 -9, —21(c — 1)2) u,Ey'G] (1), u,[{y’a] (D2, )
where
@ £p:R — R is a smooth, bounded with all its derivatives,
o forallke {1,...N}, w(7.E0(c)) = w(7,0) in a neighborhood of w, " ([a,b]),
© «(s) is the curvature of the boundary at the point of curvilinear abscissa s. )
e
For all k> 1, Ci(&_1(y)) has the same sign as ]/([)kfl] — 7, for some }/([)Afli. This fact has

important consequences on the asymptotics of the low-lying spectrum, which have not
been observed before. In Kachmar'06, for k =1, it was stated that C;(&y(y)) > 0 for all

¥... |

14 /21



What are Eg and N ?

= Let Ep:R — R be a smooth, bounded with all its derivatives, and increasing
function such that for all k € {1,...,N}, w(7,E0(0)) = (7, 0) in a neighborhood
of /.Lk_l([a,b]) and g o &y takes its values in (—oo,a) U (b,+o0) away from it.

()

Eigenvalues of H[y, ] for Robin parameter v = —1
Ha
77777777777777777777777777777777777777777777777 M3 .

b
a

""""""""""""""" / =

"""""""""""""""" /_’ I

_/ 15" ([a.1])
-2 -1 0 1 2 4
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What are Eg and N ?

= Let Ep:R — R be a smooth, bounded with all its derivatives, and increasing
function such that for all k € {1,...,N}, w(7,E0(0)) = (7, 0) in a neighborhood
of /.Lk_l([a,b]) and g o &y takes its values in (—oo,a) U (b,+o0) away from it.

R Eigenvalues of H{y, 0] for Robin parameter 5 = —1
s
TN N NG
64
77777777777777777777777777777777777777777777777 Iz
b
T 4
- a
oo\ o
/ "
2
L e S N I 7___;L] -
04 —/
L — s5 " ([a.])
—2 -1 0 1 2 3 4
-

= We let
Ni=#{k > 1: (y,-)"" ([a,b]) # 0}
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Application I: low-lying eigenvalues

Corollary (Spectrum at critical value)

Consider y # 7/(:)0], and let € = sign(}/([)o] —9) =sign(C(Ey(y))). Assume that ex admits a

unique maximum at smax, which is non-degenerate. Then, for all j > 1, uniformly when
1
Jjhi =o(1),

A1) = (1)~ w(smax)Cr (G0 + I ey G (7 o) +o(A),

with ky = — k" (Smax)-
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A1) = (1)~ w(smax)Cr (G0 + I ey G (7 o) +o(A),

with ky = — k" (Smax)-

w If y=0, then uf(7,&0(7)) = 6C1(&0(7))1/ O (7). Thus,
hi(2j—1)

T Ci& ) (1) ok -o(h?).

2;(0,h) = 01 (1) — KinaxCi1 (Eo(1)? +

v It extends to any any value of the Robin parameter the result obtained by Fournais
and Helffer (but without the uniformity in j) when y=0.

B S. Fournais and B. Helffer. Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian.
Ann. Inst. Fourier (Grenoble), 56(1), 2006.
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Comments

@ We can prove that the corresponding eigenfunctions are localized near the points of

. 0 . .
maximal curvature when y <y, ], but near the points of minimal curvature when

Y > %1)0]. This last fact was not known before.
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Y > %1)0]. This last fact was not known before.

@ When y= 7/([)0], our strategy can be used/refined to get the spectral asymptotics:

Aj(v,h) = O (Y)h+ Wi (ty) + o (h?),

where

oy = w

_1
(Dy+ o) — ™ & (7)) +Cr(s),
for some Cy € R. In this transition regime, the effective operator is not semiclassical.

© When the curvature « is constant, in the case y € R, we are in a degenerate

[0]

N - 0 S
situation rather similar to the case when y = y,". We can prove an expansion in the
form

Aj(1,h) = @ (Y)h— kCy (Eo(7))h? + K2 Aj( ) + o(h).
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@ When y= 7/([)0], our strategy can be used/refined to get the spectral asymptotics:
Aj(1.h) = O (V)b W Aj(Ay) + (1),
where
1
(Ds+au(h) = h™ 28 (7)) + Cy(s),

for some Cy € R. In this transition regime, the effective operator is not semiclassical.

oy = w

© When the curvature « is constant, in the case y € R, we are in a degenerate
situation rather similar to the case when y = )/})OJ. We can prove an expansion in the
form .
Aj(7,h) = O (Y)h — kCy (Ey(7))h2 + WA () + o(K?).

When y=0 and j =1, a similar estimate is described in Fournais-Helffer'10.

ﬁ S. Fournais and B. Helffer. Spectral methods in surface superconductivity, volume 77 of Progress
in Nonlinear Differential Equations and their Applications, Birkhduser Boston, 2010.
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Application II: excited eigenvalues

Theorem (Spectrum at Regular Values)

@ Let [a,b] be an interval as before and without critical values.

@ Let p(k) be the number of connected components of uk_l([a,b}).

@ Foreach k=1,...,N, for each g=1,...,p(k) , let £ ; C R be an interval such that
Uk (7,-) is a diffeomorphism from X , to a neighborhood of [a,b].

n(7,0)

Eigenvalues of H[y, 0] for Robin parameter = —1

\_/ 15 (a.b)

-1 0 1

I

2
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Application II: excited eigenvalues

Theorem (Spectrum at Regular Values)

. I . . .
Then there exists a smooth map Xz, 3 6 — fi 4(0,/2) € R with an asymptotic expansion

Feq(0,h2) ~ fig0(0)+h2 fig1 () +---

s.t the spectrum of %, in [ha, hb] coincides, modulo & (h?), with the disjoint union

N [7
L U {hfig(0.h), 0 €13 (FT+0)NE, ) | Nlha,hb], 6(1) = 1o
=il =il ‘ h|oQ|

Moreover, we have, when ¢ € Zkﬁq,

Jeq0(0) = W(7,0),  fig1(0) = —(K)C(0),

where (k) is the average curvature:

oL T . i
7i(/0 K(s) S*z( auss-Bonnet theorem).

19 /21



Application IIT: Precise Weyl formula

Consider a and b as before. Then the number of eigenvalues of %), in [ha,hb] is

IL
whl/2

N(Z ha, b)) = { y o Kyl (0’(111/2)J ,
kg kq

where

Ce(Brg)  Crlogy)
oo, — , sl . “k\Pkg) @,
ko = |ka = Pl ST T Beg)] Tt (ong)]

with oy , = Iiqul (a), Brq = ”/;ql (5)-
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Application IIT: Precise Weyl formula

Consider a and b as before. Then the number of eigenvalues of %), in [ha,hb] is

IL
whl/2

N(Z ha, b)) = { y o Kyl (0’(111/2)J ,
kg kq

where
sl 8 sl . CelBrg)  Cilog)
o = |oka=PBual - 8g = i (Beg)]  ui(oug)]

with oy , = Iiqul (a), Brq = ”/;ql (5)-

@ When y=0, the one-term asympotics is a consequence of Frank'07.

@ R. L. Frank. On the asymptotic number of edge states for magnetic Schrédinger operators, Proc.
Lond.Math. Soc. (3), 95(1):1-19, 2007.
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Application IIT: Precise Weyl formula

Consider a and b as before. Then the number of eigenvalues of %), in [ha,hb] is

L Lix 7
N(%Z, [ha, hb]) = Lrhl/z kzakﬁ?jﬁykzsk[}hﬁ(hl/zﬁ’
.q Cq
where ) )
5/52 = |otg—Brgl, 8= k(Brg) (O q)

KT (Beg) | g (oug)]

with oy , = Iiqul (a), Brq = ”/;ql (5)-

@ When y=0, the one-term asympotics is a consequence of Frank'07.

@ R. L. Frank. On the asymptotic number of edge states for magnetic Schrédinger operators, Proc.
Lond.Math. Soc. (3), 95(1):1-19, 2007.

@ When y= +co, the one-term asympotics is a consequence of the analysis by
Cornean, Fournais, Frank, Helffer'13.

@ H. D. Cornean, S. Fournais, R. L. Frank, and B. Helffer. Sharp trace asymptotics for a class of
2D-magnetic operators, Ann. Inst. Fourier, 63(6):2457-2513, 2013.
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Thank you !
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