6 janvier 2025 à 4 avril 2025
IHP
Fuseau horaire Europe/Paris

Reciprocal hyperbolic elements in $\operatorname{PSL}_2(\mathbb{Z})$

5 févr. 2025, 11:15
55m
Amphitheater Darboux (IHP)

Amphitheater Darboux

IHP

11, Rue Pierre et Marie Curie 75005 Paris

Orateur

Alain Valette (Université de Neuchâtel)

Description

An element $A$ in $\operatorname{PSL}_2(\mathbb{Z})$ is hyperbolic if $|\operatorname{Tr}(A)|>2$. The maximal virtually abelian subgroup of $\operatorname{PSL}_2(\mathbb{Z})$ containing $A$ is either infinite cyclic or infinite dihedral; say that $A$ is reciprocal if the second case happens ($A$ is then conjugate to its inverse). We give a characterization of reciprocal hyperbolic elements in $\operatorname{PSL}_2(\mathbb{Z})$ in terms of the continued fractions of their fixed points in $\operatorname{P}^1(\mathbb{R})$ (those are quadratic surds). Doing so we revisit results of P. Sarnak (2007) and C.-L. Simon (2022), themselves rooted in classical work by Gauss and Fricke \& Klein.

https://sites.google.com/view/julgfest

Documents de présentation

Aucun document.