Speaker
Larry Read
(LMU)
Description
For a Schrödinger operator $-\Delta-\alpha V$, the decay of the potential $V$ towards infinity determines the finiteness of its negative spectrum. In the particular case where $V$ is asymptotically homogeneous of degree -2, the size of the coupling constant $\alpha$ distinguishes between the generation of finitely or infinitely many negative eigenvalues. In this talk we will show that a similar property holds when the potential has slower decay but oscillates at infinity.