Soutenances

Dynamique des endomorphismes post-critiquement algébriques

par M. Van Tu Le (Institut de Mathématiques de Toulouse)

Europe/Paris
Amphithéâtre Laurent Schwartz, bâtiment 1R3 (Institut de Mathématiques de Toulouse)

Amphithéâtre Laurent Schwartz, bâtiment 1R3

Institut de Mathématiques de Toulouse

118 route de Narbonne 31062 Toulouse Cedex 9
Description

Dans cette thèse, j'étudie la dynamique des endomorphismes de l'espace projectif complexe. Je m'intéresse aux endomorphismes post-critiquement algébriques, une notion qui généralise celle de fractions rationnelles post-critiquement finies en dimension 1. En particulier, j'étudie les valeurs propres d'un endomorphisme post-critiquement algébrique le long de l'orbite d'un point périodique. En dimension 1, un résultat bien connu, qui remonte aux travaux de Pierre Fatou, dit que ces valeurs sont soit nulles soit de module strictement plus supérieur à 1. Dans cette thèse, j'étudie une conjecture qui généralise ce résultat en dimension au moins 2. Dans la première partie de cette thèse, j'étudie une famille des endomorphismes post-critiquement algébriques introduite dans la thèse de Sarah Koch. En utilisant la caractérisation topologique des fractions rationnelles de William Thurston, sous certaines conditions, Sarah Koch a associé à une fraction rationnelle post-critiquement finie g un endomorphisme post-critiquement algébrique f. Lorsque g est un polynôme quadratique, je donne une caractérisation détaillée des valeurs propres de l'endomorphisme associé f en ses points fixes. En particulier, je montre que celles-ci sont soit nulles soit de modules strictement supérieurs à 1. Ce résultat suggère la validité de la conjecture. Dans la deuxième partie, je montre que la conjecture est vraie dans le cas de dimension 2 sans hypothèse supplémentaire et en toute dimension lorsque les points périodiques sont en dehors de l'ensemble post-critique et sans autre hypothèse.