Soutenances

On the variational approach to mollification in the theory of ill-posed problems and applications

par M. Walter Cedric Simo Tao Lee (Institut de Mathématiques de Toulouse)

Europe/Paris
Amphithéâtre Laurent Schwartz, bâtiment 1R3 (Institut de Mathématiques de Toulouse)

Amphithéâtre Laurent Schwartz, bâtiment 1R3

Institut de Mathématiques de Toulouse

118 route de Narbonne 31062 Toulouse Cedex 9
Description

Les problèmes inverses constituent un domaine en pleine expansion en mathématiques appliquées qui a suscité une grande attention au cours des dernières décennies en raison de son omniprésence dans plusieurs domaines des sciences et technologies. Le plus souvent, les problèmes inverses donnent lieu à des équations mathématiques instables. Autrement dit, les solutions ne dépendent pas continument des données. En effet, de très petites perturbations sur les données peuvent causer des erreurs arbitrairement grandes sur les solutions. Étant donné que le bruit est généralement inévitable, inverser l'équation mal-posée échoue à résoudre le problème. Il est alors nécessaire d'appliquer une méthode de régularisation afin de récupérer des approximations stables des solutions. À cet égard, plusieurs techniques de régularisation ont été développées dans la littérature. Globalement, ces méthodes de régularisation peuvent être divisées en deux classes : Une classe de méthodes qui tentent de reconstruire les solutions inconnues initiales et une classe de méthodes qui tentent de reconstruire des versions lisses des solutions inconnues. L'objectif de cette thèse est de contribuer à la promotion de la deuxième classe de méthode de régularisation à travers l'étude et l'application de la formulation variationnelle de la mollification. Dans ce manuscrit, nous montrons que l'approche variationnelle de la mollification peut être étendue à la régularisation de problèmes mal-posés impliquant des opérateurs non compacts. À cet égard, nous étudions et appliquons avec succès la méthode à la régression instrumentale non-paramétrique. Une contribution supplémentaire de cette thèse est la conception et l'étude d'une nouvelle méthode de régularisation adaptée aux problèmes linéaires exponentiellement mal-posés. Une comparaison numérique de cette nouvelle méthode aux méthodes classiques de régularisation telles que Tikhonov, la spectral cut-off, la régularisation asymptotique et la méthode des gradients conjugués est effectuée sur trois problèmes test tirés de la littérature. L'aspect pratique de la sélection du paramètre de régularisation avec un niveau de bruit inconnu est également considéré. Outre l'étude et l'application des méthodes de régularisation, cette thèse traite également de l'application d'une règle de sélection de paramètres de régularisation très populaire connue sous le nom du principe de Morozov. En utilisant la dualité de Lagrange, nous fournissons un algorithme simple et rapide pour le calcul du paramètre de régularisation correspondant à cette règle pour les méthodes de régularisation du type Tikhonov. L'intérêt de cette étude est qu'elle met en avant une méthode de régularisation mal connue qui pourtant a un grand potentiel et est capable de fournir des solutions approchées comparativement meilleures que certaines techniques de régularisation classiques bien connues. Un autre apport de cette thèse est la conception d'une nouvelle méthode de régularisation qui, selon nous, est prometteuse dans la régularisation de problèmes exponentiellement mal-posés, en particulier pour les problèmes inverses de conduction thermique.