Séminaire de Physique Théorique

The modular class of an odd Poisson supermanifold and second order operators on half-densities

par Prof. Hovhannes M. KHUDAVERDIAN (The University of Manchester & IHÉS)

Europe/Paris
Amhithéâtre Léon Motchane (IHES)

Amhithéâtre Léon Motchane

IHES

IHES Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description
 Second order operator $\Delta$ on half-densities can be uniquely defined by its principal symbol  $E$ up to a `potential' $U$. If $\Delta$ is an odd operator such that order of  operator $\Delta^2$ is less than $3$ then principal symbol $E$ of this operator defines an odd Poisson bracket. We define the modular class of an odd Poisson supermanifold in terms of $\Delta$ operator defining the odd Poisson structure. In the case of non-degenerate odd Poisson structure (odd symplectic case) the modular class vanishes, and we come to canonical odd Laplacian on half-densities, the main ingridient of Batalin-Vilkovisky
formalism.  Then we consider examples of odd Poisson supermanifolds with non-trivial modular classes related with the Nijenhuis bracket.
  
The talk is based on the joint paper with M. Peddie: arXive: 1509.05686
Contact