Séminaire MAC

Théorie de Cauchy et ondes progressives pour l'équation de Gross-Pitaevskii logarithmique

par M. Guillaume Ferriere (Université de Strasbourg)

Europe/Paris
Description

On s'intéresse dans cet exposé à l'équation de Gross-Pitaevskii logarithmique (logGP), qui n'est autre que l'équation de Schrödinger non-linéaire logarithmique (logNLS) dans le contexte de solutions dont le module tend vers 1 à l'infini. La première partie concerne le problème de Cauchy, pour lequel les techniques classiques pour Gross-Pitaevskii avec non-linéarité polynomiale mais également celles utilisées pour logNLS se sont révélées infructueuses. Pour obtenir une bonne théorie de Cauchy, notre preuve de l'existence d'une solution adapte la méthode par compacité utilisée par Ginibre et Velo pour NLS. L'unicité découle du caractère lipschitzien du flot dans L^2 comme pour logNLS. Dans un deuxième temps, on s'intéresse aux ondes progressives, et en particulier au cas 1d, pour lequel plusieurs conclusions similaires au cas avec non-linéarité polynomiale découlent : au-delà d'une certaine vitesse critique explicite, aucune onde progressive n'existe; en deçà, les ondes progressives non-constantes sont uniques à invariants près.
Ce travail a été réalisé en collaboration avec R. Carles.

Organisé par

Romain Duboscq, Ariane Trescases