Orateur
Description
Dans un travail récent avec Valentin Ovsienko, nous avons introduit des q-analogues des nombres rationnels. Il s’agit de fractions rationnelles à coefficients entiers s’obtenant naturellement par une approche combinatoire. Un remarquable phénomène de stabilisation permet d'étendre la q-déformation à tout nombre réel menant à des séries formelles à coefficients entiers. Si à l’origine des q-rationnels on peut remonter à des calculs de polynômes de Jones pour des invariants de noeuds, les q-nombres dévoilent de remarquables propriétés permettant de revisiter des classiques de théorie des nombres (Fibonacci, Pell, Farey, Markov, Hurwitz,…). Nous discuterons divers aspects combinatoires et analytiques de ces q-nombres en présentant des résultats basés sur plusieurs collaborations avec L. Leclere, V. Ovsienko, et A. Veselov.