Séminaire de Géométrie, Groupes et Dynamique
Natalia Goncharuk: "Complex rotation numbers and renormalization ": *annulé*
→
Europe/Paris
435 (UMPA)
435
UMPA
Description
Given an analytic circle diffeomorphism $f$ and a complex number $\omega\in \bbH$, consider a fundamental domain of $f+\omega$ in $\bbC/\bbZ$ that is close to $\bbR/\bbZ$. The quotient space of this fundamental domain via $f+\omega$ is a torus. The complex rotation number of $f+\omega$ equals the modulus of this torus. This construction is due to V. Arnold (1978).
As $\omega\to 0$, the limit values of the complex rotation number form an approximately self-similar set ``bubbles''.