Rencontres Statistiques Lyonnaises

Clustering parcimonieux pour extrêmes multivariés

par Nicolas Meyer (Université de Copenhague)

Europe/Paris
Description

Étudier la dépendance des extrêmes multivariés est l’un des enjeux majeurs de la théorie des valeurs extrêmes. Sous l’hypothèse de variation régulière, cette structure de dépendance est caractérisée par une mesure, appelée mesure spectrale, qui est définie sur l’orthant positif de la sphère unité. Cette mesure regroupe l’information sur la localisation des événements extrêmes. Son support est souvent parcimonieux puisque de tels événements n’apparaissent pas simultanément dans toutes les directions de l’espace. Cependant, elle est définie comme limite faible de probabilités ce qui rend difficile l’estimation d’un tel support. Dans cet exposé, nous introduisons la notion de variation régulière parcimonieuse qui permet de mieux identifier la structure parcimonieuse des extrêmes. d’un vecteur X. Nous utilisons ensuite ce concept dans un cadre statistique et proposons une procédure qui met en évidence des clusters de coordonnées extrêmes de X. Cette approche inclut aussi la sélection d’un seuil au-dessus duquel les valeurs prises par X sont considérées comme extrêmes. Nous proposons alors un algorithme appelé MUSCLE et nous l’illustrons sur des données simulées. Nous l’appliquons enfin à l’étude des vitesses de vent en Irlande.