Documents de présentation
Let L be a compact Lagrangian in a Weinstein manifold
obtained from a subcritical one by attaching a handle along a Legendrian V. We will see how to associate to L a filling of a satelite of V and how this one induces a representation of the Chekanov-Eliashberg algebra of V. We will show that Legendrian contact homology linearised with respect to this representation recovers the Floer...
I will show that the standard contact structure on the real projective spaces RP^{4k+1} is not Liouville fillable using a classical argument on degeneration of moduli spaces of holomorphic spheres. A stronger result has been obtained by Zhengyi Zhou using more algebraic methods. This is a joint work with Klaus Niederküger
Mixing triangulation (in the sense of triangulated categories) with persistence (as in persistence modules) leads to a class of interesting pseudo-metrics in a variety of examples: metric spaces, Tamarkin categories, filtered topological spaces, Fukaya
categories. I will discuss some generalities concerning this machinery and how it specifically applies to the symplectic context. The talk is...
A multiple cut operation on a symplectic manifold produces a collection of cut spaces, each containing relative normal crossing divisors. We explore what happens to curve count-based invariants when a collection of cuts is applied to a symplectic manifold. The invariant we consider is the Fukaya algebra of a Lagrangian submanifold that is contained in the complement of relative divisors. The...
- ven. 07/05
- sam. 08/05
- dim. 09/05
- lun. 10/05
- mar. 11/05
- mer. 12/05
- jeu. 13/05
- ven. 14/05
- sam. 15/05
- dim. 16/05
- lun. 17/05
- mar. 18/05
- mer. 19/05
- jeu. 20/05
- ven. 21/05
- sam. 22/05
- dim. 23/05
- lun. 24/05
- mar. 25/05
- mer. 26/05
- jeu. 27/05
- ven. 28/05
- sam. 29/05
- dim. 30/05
- lun. 31/05
- mar. 01/06
- mer. 02/06
- jeu. 03/06
- ven. 04/06
- sam. 05/06
- dim. 06/06
- lun. 07/06
- mar. 08/06
- mer. 09/06
- jeu. 10/06
- ven. 11/06
- sam. 12/06
- dim. 13/06
- lun. 14/06
- mar. 15/06
- mer. 16/06
- jeu. 17/06
- ven. 18/06
- Tous les jours