Séminaire de Géométrie Arithmétique Paris-Pékin-Tokyo

Hodge index theorem for adelic line bundles

by Prof. Xinyi YUAN (Université de Berkeley)

Centre de conférences Marilyn et James Simons (IHES)

Centre de conférences Marilyn et James Simons


Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
The Hodge index theorem of Faltings and Hriljac asserts that the Neron-Tate height pairing on a projective curve over a number field is equal to a certain intersection pairing in the setting of Arakelov geometry. In the talk, I will present an extension of this result to adelic line bundles on higher dimensional varieties over finitely generated fields. Then I will talk about its relation to the non-archimedean Calabi-Yau theorem and its application to algebraic dynamics. This is a joint work with Shou-Wu Zhang.

Page web du séminaire