4–6 sept. 2019
Strasbourg
Fuseau horaire Europe/Paris

Becker’s conjecture on Mahler functions

5 sept. 2019, 15:00
1h
Salle séminaire (Strasbourg)

Salle séminaire

Strasbourg

IRMA, université de Strasbourg

Orateur

Frédéric Chyzak

Description

In 1994, Becker conjectured that if F(z) is a k-regular power series, then there exists a k-regular rational function R(z) such that F(z)/R(z) satisfies a Mahler-type functional equation with polynomial coefficients where the initial coefficient satisfies a0(z)=1. In this work, we prove Becker’s conjecture in the best possible form; we show that the rational function R(z) can be taken to be a polynomial zγQ(z) for some explicit non-negative integer γ and such that 1/Q(z) is k-regular. (This is joint work with Jason P. Bell, Michael Coons, and Philippe Dumas.)

Documents de présentation

Aucun document.