8–12 avr. 2019
Université Paris Diderot
Fuseau horaire Europe/Paris

Inverting the assembly map (after S. Nishikawa)

10 avr. 2019, 09:00
50m
Bâtiment Sophie Germain, Amphi Turing (Université Paris Diderot)

Bâtiment Sophie Germain, Amphi Turing

Université Paris Diderot

8 Place Aurélie Nemours, 75013 Paris
Abstract

Orateur

Alain Valette (Univ. Neuchatel)

Description

In a recent preprint (https://arxiv.org/abs/1808.08298), Nishikawa introduces a property (γ) for elements x in the Kasparov ring R(G): it says that the Fredholm module defining x carries a compatible action of C0(X), where X is a G-compact model for the classifying space for proper actions of G. The basic observation is that x then defines a morphism Undefined control sequence \C, that is a candidate for a right inverse for the Baum-Connes assembly map. It is proved that, if x=1 in R(G), it is indeed the case. Using this, new proofs of the Baum-Connes conjecture with coefficients are obtained for Euclidean motion groups, and for groups acting properly co-compactly on locally finite trees.

Auteur principal

Alain Valette (Univ. Neuchatel)

Documents de présentation

Aucun document.