Série de Courts Exposés
# Poincaré duality in equivariant intersection theory

##
by

→
Europe/Paris

Amphitéâtre Léon Motchane (IHES)
### Amphitéâtre Léon Motchane

#### IHES

Le Bois Marie
35, route de Chartres
91440 Bures-sur-Yvette

Description

The aim of this talk is to provide a notion of Poincaré duality for the Chow groups of singular varieties where a torus acts with finitely many fixed points. We relate this concept to the usual notion of Poincaré duality in the smooth and rationally smooth cases (e.g. Betti numbers). Finally, we characterize it in terms of equivariant multiplicities, i.e. certain rational functions having poles along hyperplanes associated to the weights of the action.

Contact