Cours de l'IHÉS­­ 2013-2014

Universal mixed elliptic motives (1/4)

by Prof. Richard HAIN (Duke University, Durham, USA)

Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane


Le Bois Marie 35, route de Chartres

Universal mixed elliptic motives are certain local systems over a modular curve that are endowed with additional structure, such as that of a variation of mixed Hodge structure. They form a tannakian category. The coordinate ring of its fundamental group is a Hopf algebra in a category of mixed Tate motives.

This course will be an introduction to universal mixed elliptic motives, which were defined with Makoto Matsumoto, and a report on more recent developments. One focus will be on the structure of the tannakian fundamental group of the category of mixed elliptic motives over M1,1. In particular, we will explain that it is an extension of GL2 by a prounipotent group whose Lie algebra is generated by Eisenstein series and has non-trivial relations coming from cusp forms. We will also discuss the relation of mixed elliptic motives to mixed Tate motives via specialization to the Tate curve and the nodal cubic.
From the same series
2 3 4