Séminaire de Géométrie Arithmétique Paris-Pékin-Tokyo

On the cycle class map for zero-cycles over local fields

par Prof. Olivier WITTENBERG (ENS et CNRS)

Centre de conférences Marilyn et James Simons (IHES)

Centre de conférences Marilyn et James Simons


Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
The Chow group of zero-cycles of a smooth and projective variety defined over a field k is an invariant of an arithmetic and geometric nature which is well understood only when k is a finite field (by higher-dimensional class field theory). In this talk, we will discuss the case of local and strictly local fields. We prove in particular the injectivity of the cycle class map to integral l-adic cohomology for a large class of surfaces with positive geometric genus over p-adic fields. The same statement holds for semistable K3 surfaces over C((t)), but does not hold in general for surfaces over C((t)) or over the maximal unramified extension of a p-adic field. This is a joint work with Hélène Esnault.

Page web du séminaire

Your browser is out of date!

Update your browser to view this website correctly. Update my browser now