Séminaire INRIabcd

Personalized oncology with artificial intelligence: The case of temozolomide

par Dr Nicolas Houy (GATE Lyon St-Etienne UMR5824)

Europe/Paris
432 (4ème tage) (INRIA- antenne Lyon- La Doua, Bâtiment CEI-2 (tram: T1-IUT FEYSSINE))

432 (4ème tage)

INRIA- antenne Lyon- La Doua, Bâtiment CEI-2 (tram: T1-IUT FEYSSINE)

INRIA- antenne Lyon- La Doua, Bâtiment CEI-2 (tram: T1-IUT FEYSSINE)
Description
Purpose. Using artificial intelligence techniques, we compute optimal personalized protocols for temozolomide administration in a population of patients with variability. Methods. Our optimizations are based on a Pharmacokinetics / Pharmacodynamics (PK/PD) model with population variability for temozolomide. The patient pharmacokinetic parameters can only be partially observed at admission and are progressively learned by Bayesian inference during treatment. For every patient, we seek to minimize tumor size while avoiding severe toxicity, i.e. maintaining an acceptable toxicity level. The optimization algorithm we rely on borrows from the field of artificial intelligence. Results. Optimal personalized protocols (OPP) achieve a sizable decrease in tumor size at the population level but also patient-wise. The tumor size is on average 67.2 grams lighter than with the standard maximum-tolerated dose protocol (MTD) after 336 days (12 MTD cycles). The corresponding 90% confidence interval for tumor size reduction amounts to [58.6−82.7] (grams). When treated with OPP, less patients experience severe toxicity in comparison to MTD. Major findings. We quantify in-silico the benefits offered by personalized oncology in the case of temozolomide administration. To do so, we compute optimal personalized protocols for a population of heterogeneous patients using artificial intelligence techniques. At each treatment day, the protocol is updated by taking into account the feedback obtained from patient’s reaction to the drug administration. Personalized protocols greatly differ from each other, and from the standard MTD protocol. Benefits of personalization are very sizable: tumor sizes are much smaller on average and also patient-wise, while severe toxicity is made less frequent.