Analyse Complexe, Géométrie Complexe et Applications

Europe/Paris
Amphi Herpin & Amphi Astier (Université Pierre et Marie Curie Paris 6)

Amphi Herpin & Amphi Astier

Université Pierre et Marie Curie Paris 6

4, place Jussieu 75252 Paris Cedex 05
Description

Analyse Complexe, Géométrie Complexe et Applications

Complex Analysis, Complex Geometry and Applications
Colloque en mémoire de G. Henkin

Organisateurs :

Conférenciers :

B. Berndtsson (Göteborg),  J. -M.Bismut (Orsay), M. Kontsevich (IHES), G. Marinescu (Köln), N. Mok (Hong Kong) , R. Novikov (École Polytechnique), D. H. Phong (Columbia) , N. Sibony (Orsay), Y-T. Siu (Harvard).

Affiche
Participants
  • ANDREI IORDAN
  • Anne Boutet de Monvel
  • Bingxiao LIU
  • Bo Berndtsson
  • christian peskine
  • Christophe MARGERIN
  • Cinzia Bisi
  • Duc Viet VU
  • Duong Phong
  • Eleonora Di Nezza
  • Eliane SALEM
  • Elisha Falbel
  • Fedor Goncharov
  • George Marinescu
  • Gilles Courtois
  • Giuseppe Dito
  • Gourab Bhattacharya
  • helene airault
  • HENRI SKODA
  • Henry de Thélin
  • Hoang-Chinh Lu
  • JEAN PIERRE VIGUE
  • jean vaillant
  • Jean-Jacques Sansuc
  • Jean-Michel Bismut
  • Jean-Pierre Francoise
  • Jinbo REN
  • Johan Taflin
  • Josefa Genyle do Nascimento Santana
  • Joël MERKER
  • Julien Marche
  • JUNYAN CAO
  • Jürgen Leiterer
  • Louis Ioos
  • Loïc Merel
  • Luc Pirio
  • Lucas Kaufmann
  • Léo Bénard
  • Martin Puchol
  • Maxim Kontsevich
  • Michel ENOCK
  • Min Ru
  • Mounir Nisse
  • Nessim Sibony
  • Ngaiming Mok
  • Nicolas Bergeron@
  • Nicolas Lerner
  • Nicolina Istrati
  • Olivier Biquard
  • pascal dingoyan
  • Paul Gauduchon
  • Peng Zhou
  • Pierre Schapira
  • Roman Novikov
  • Serguei Ivashkovich
  • Siarhei Finski
  • Songyan Xie
  • Stéphane RIGAT
  • Stéphanie NIVOCHE
  • Tien-Cuong DINH
  • Viet Anh Nguyen
  • Vincent Michel
  • Wei Guo Foo
  • Ya DENG
  • YANBO FANG
  • Yang Liu
  • Yum-Tong Siu
  • Zhangchi Chen
    • 1
      Acceuil des participants / Reception of participants Amphi Herpin

      Amphi Herpin

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
    • 2
      Ouverture / Opening Amphi Herpin

      Amphi Herpin

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      Orateur: Prof. Jean Chambaz (Président de l'Université Pierre et Marie Curie)
    • 3
      NEW CURVATURE FLOWS IN NON-KÄHLER GEOMETRY Amphi Herpin

      Amphi Herpin

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      Orateur: Prof. D. H. Phong (University of Columbia)
    • 4
      Pause café
    • 5
      Twistor families of categories Amphi Herpin

      Amphi Herpin

      I will give a definition of a twistor family (Cζ), ζ belonging to the Riemann sphere, of triangulated categories. The propotypical example is the family of derived categories of coherent sheaves on compact hyperkähler manifold, endowed with complex structures parametrized by twistor parameter ζ. Another basic example comes from Simpson's non-abelian Hodge theory. In a joint work (in progress) with Y.Soibelman we propose a general approach to twistor families using Fukaya categories associated with holomorphic symplectic manifolds. The most clean case is the product of an elliptic curve and C*. For ζ≠0,∞ the corresponding category has a decription in terms of elliptic difference equations. Harmonic objects are solutions of Bogomolony equations on 3-dimensional torus with isolated singularities. The universal family of categories in this example is parametrized by the non-Hausdorff quotient (CP2 -RP2)/GL(3; Z).
      Orateur: Prof. M. Kontsevich (IHES)
    • 6
      Geometric substructures, uniruled projective subvarieties, and applications to Kähler geometry Amphi Herpin

      Amphi Herpin

      In a series of articles with Jun-Muk Hwang starting from the late 1990s, we introduced a geometric theory of uniruled projective manifolds based on the variety of minimal rational tangents (VMRT), i.e., the collection of tangents to minimal rational curves on a uniruled projective manifold (X;K) equipped with a minimal rational component. This theory provides differential-geometric tools for the study of uniruled projective manifolds, especially Fano manifolds of Picard number 1. Associated to (X;K) is the fibered space π:C(X)→X of VMRTs called the VMRT structure on (X;K). I will discuss germs of complex submanifolds S on (X;K) inheriting geometric substructures, to be called sub-VMRT structures, obtained from intersections of VMRTs with tangent subspaces, i.e., from ϖ : C(S) →S, C(S) := C(X) \ PT(S). Central to our study is the characterization of certain classical Fano manifolds of Picard number 1 or special uniruled projective subvarieties on them in terms of VMRTs and sub-VMRTs. As applications I will relate the theory to the existence and uniqueness of certain classes of holomorphic isometries into bounded symmetric domains. For uniqueness results parallel transport (holonomy), a notion of fundamental importance both in Kähler geometry and in the study of sub-VMRT structures, will play an important role.
      Orateur: Prof. N. Mok (University of Hong Kong)
    • 7
      EQUIVARIANT KODAIRA EMBEDDING FOR CR MANIFOLDS WITH CIRCLE ACTION Amphi Herpin

      Amphi Herpin

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      Orateur: Prof. G. Marinescu (Universität zu Köln)
    • 8
      Pause café
    • 9
      Unique ergodicity for foliations Amphi Herpin

      Amphi Herpin

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      Consider the polynomial differential equation in C² dz/dt = P(z;w); dw/dt = Q(z;w): The polynomials P and Q are holomorphic, the time is complex. In order to study the global behavior of the solutions, it is convenient to consider the extension as a foliation in the projective plane P². I will discuss some recent results around the following questions. What is the ergodic theory of such systems? How do the leaves distribute in a generic case? What is the topology of generic leaves?
      Orateur: Prof. N. Sibony (Université d'Orsay)
    • 10
      Hypoelliptic deformation, self-adjointness, and analytic torsion Amphi Astier

      Amphi Astier

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      The purpose of the talk is to explain the construction of non self-adjoint Hodge Laplacians, which naturally deform classical Hodge theory. If X is a compact Riemannian manifold, let X be the total space of its tangent bundle. The deformed Hodge Laplacian is constructed over X. It is a hypoelliptic operator on X, which is essentially the sum of a harmonic oscillator and of the generator of the geodesic flow. In the real case, the symplectic form of X is used in its construction. Applications to analytic torsion, real and holomorphic, will be given. Time permitting, connections with Selberg's trace formula will be explained.
      Orateur: Prof. J.-M. Bismut (Université d'Orsay)
    • 11
      Pause café
    • 12
      Pluri-Hodge Decomposition and Associated Jacobian Amphi Astier

      Amphi Astier

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      Orateur: Prof. Y-T. Siu (Univesity of Harvard)
    • 13
      Multidimensional inverse scattering problem Amphi Astier

      Amphi Astier

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      We give a review of old and recent results on the multidimensional inverse scattering problem related with works of G.M. Henkin. This talk is based, in particular, on the following references: ▶ G.M. Henkin, R.G. Novikov, The dbar-equation in the multidimensional inverse scat- tering problem, Russ. Math. Surv. 42(3), 109-180, 1987; ▶ G.M. Henkin, N.N. Novikova, The reconstruction of the attracting potential in the Sturm-Liouville equation through characteristics of negative discrete spectrum, Stud. Appl. Math. 97, 17-52, 1996; ▶ R.G. Novikov, The dbar-approach to monochromatic inverse scattering in three dimen- sions, J. Geom. Anal. 18, 612-631, 2008; ▶ R.G. Novikov, Formulas for phase recovering from phaseless scattering data at fixed frequency, Bull. Sci. Math. 139, 923-936, 2015.
      Orateur: Prof. R. Novikov (École Polytechnique)
    • 14
      Pause café
    • 15
      Remarks on superforms and supercurrents Amphi Astier

      Amphi Astier

      Université Pierre et Marie Curie Paris 6

      4, place Jussieu 75252 Paris Cedex 05
      This is basically a survey of Lagerberg's work on superforms and supercurrents, with some additions. We will illustrate the formalism with a proof of Weyl's tube formula and state a conjecture related to the Alexandrov-Fenchel inequality.
      Orateur: Prof. B. Berndtsson (Göteborgs Universitet)