Séminaire Géométrie et groupes discrets

Automorphismes de groupes hyperboliques et croissance

by Prof. Camille Horbez (CNRS & Université Paris-Sud)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Description
Soit G un groupe hyperbolique sans torsion, soit S une partie génératrice finie de G, et soit f un automorphisme de G. Nous cherchons à comprendre les taux de croissance possibles pour la longueur d'un élément g du groupe G (écrit comme un mot en les générateurs dans S) sous l'itération de f. Le cas où G est un groupe de surface ou un groupe libre est compris grâce à des résultats de Thurston et Bestvina-Handel. Nous montrons qu'en général, il n'y a qu'un nombre fini de taux de croissance exponentiels possibles lorsque l'élément g parcourt G. Par ailleurs, nous montrons la dichotomie suivante : tout élément a une croissance qui est soit exponentielle, soit polynomiale. Ceci est un travail en commun avec Rémi Coulon, Arnaud Hilion et Gilbert Levitt.
Contact