Entropy solutions to doubly nonlinear integro-differential equations
par
Petra Wittbold(Université de Duisbourg et Essen, Allemagne)
→
Europe/Paris
XLIM Salle X.203
XLIM Salle X.203
FST-Université de Limoges,
123, Av. Albert Thomas.
Description
We consider a class of doubly nonlinear history-dependent problems associated with the equation
\partial_t k \times (b(v) − b(v_0)) = \mbox{div }a(x, Dv) + f.
Our assumptions on the kernel $k$ include the case $k(t) = t^{−\alpha}/Γ(1−\alpha)$, in which case the left-hand side becomes the fractional derivative of order $\alpha \in (0, 1)$ in the sense of Riemann-Liouville. Existence of entropy solutions is established for general L$^1$−data and Dirichlet boundary conditions. Uniqueness of entropy solutions has been shown in a previous work.