Les personnes qui possèdent un compte PLM-Mathrice sont invités à l'utiliser.
Journée transport optimal, équation de Monge-Ampère et applications

Canonical barriers on convex cones

by Prof. Roland HILDEBRAND (Université Grenoble-Alpes)

mercredi 7 décembre 2016 de au (Europe/Paris)
at IHES ( Amphithéâtre Léon Motchane )
Le Bois Marie 35, route de Chartres 91440 Bures-sur-Yvette
Description

The Calabi theorem states that for every regular convex cone K in R^n, the Monge-Ampère equation log det F” = 2F/n has a unique convex solution on the interior of K which tends to +infty on the boundary of K. It turns out that this solution is self-concordant and logarithmically homogeneous, and thus is a barrier which can be used for conic optimization. We consider different aspects of this barrier:

  • affine spheres as level surfaces
  • metrization of the interior of K by the Hessian metric F”
  • primal-dual symmetry
  • interpretation as a minimal Lagrangian submanifold in a certain para-Kähler space form
  • complex-analytic structure on 3-dimensional cones.
Organisé par Quentin Mérigot
Contact Email: cecile@ihes.fr