Jun 23 – 27, 2014
Université Lille 1
Europe/Paris timezone

Recent Progress in Bogomolov's Program: A Survey

Jun 26, 2014, 5:00 PM
Salle de réunions (Université Lille 1)

Salle de réunions

Université Lille 1

U.M.R. CNRS 8524 U.F.R. de Mathématiques 59 655 Villeneuve d'Ascq Cédex
Géométrie arithmétique et théorie de Galois Géométrie arithmétique et théorie de Galois


Aaron Silberstein (University of Pennsylvania)


Given a field $K$, finitely generated and of transcendence degree $2$ over the algebraic closure of a prime field, we may now reconstruct $K$ from the maximal $2$-step nilpotent pro-$\ell$ quotient of its absolute Galois group. This allows us to construct a complete (albeit countably infinite) set of geometric obstructions for an element of the Grothendieck-Teichmüller group to come from an element of the absolute Galois group of $\mathbb{Q}$.

Presentation materials

There are no materials yet.