On the mod-p Cohomology of Certain p-saturable Groups
par
Amphithéâtre Léon Motchane
IHES
Séminaire de géométrie arithmétique
The mod-$p$ cohomology of equi-$p$-saturable pro-$p$ groups has been calculated by Lazard in the 1960s. Motivated by recent considerations in the mod-$p$ Langlands program, we consider the problem of extending his results to the case of compact $p$-adic Lie groups $G$ that are $p$-saturable but not necessarily equi-$p$-saturable: when $F$ is a finite extension of $\mathbb{Q}_p$ and $p$ is sufficiently large, this class of groups includes the so-called pro-$p$ Iwahori subgroups of $SL_n(F)$. In general, using the work of Serre and Lazard one can write down a spectral sequence that relates the mod-$p$ cohomology of $G$ to the cohomology of its associated graded mod-$p$ Lie algebra $\mathfrak{g}$. We will discuss certain sufficient conditions on $p$ and $G$ that ensure that this spectral sequence collapses. When these conditions hold, it follows that the mod-$p$ cohomology of $G$ is isomorphic to the cohomology of the Lie algebra $\mathfrak{g}$.
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Ahmed Abbes