PGMO Lecture - Isoperimetry and Convex Geometry in High Dimensions, by Bo'az Klartag

Europe/Paris
3L8 (Institut de Mathématiques d'Orsay)

3L8

Institut de Mathématiques d'Orsay

307 Rue Michel Magat, 91400 Orsay
Quentin Merigot, Stephane Gaubert (INRIA and Ecole polytechnique)
Description

 

 

We will discuss recent progress in understanding the uniform measure on high-dimensional convex bodies, focusing on advances toward the Kannan-Lovász-Simonovits (KLS) isoperimetric conjecture, as well as the resolution of Bourgain’s slicing problem and the thin-shell conjecture.

The study of uniform measures on high-dimensional convex bodies provides a testing ground for powerful analytic methods with applications in broader mathematical contexts. These techniques include spherical and Gaussian concentration of measure, convex localization, optimal transport with the Monge cost, Bochner identities and curvature, heat flow, and stochastic localization..

The first part of the course will be dedicated to background on geometric phenomena in high-dimensions. In the second part, we will study in detail the heat evolution of log-concave measures using the Brownian interpretation and pathwise methods.

Feb 5-6, 2026, at Institut de Mathématique d'Orsay

Lecturer: Bo'az Klartag, Tel Aviv University and Weizmann institute for science

Inscription
Registration PGMO Lecture of Bo'az Klartag