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Lecture 1

The cube and the sphere in high dimensions

In these lectures we study geometry in an n-dimensional Euclidean space when the
dimension n is very large, tending to infinity. We will encounter high-dimensional
phenomena that do not arise in dimension 3 or 7, say, such as concentration of measure
or the emergence of approximately symmetric substructures.

The simplest examples of geometric shapes in R" are perhaps the unit cube

n_[ 1 1]"
Q" = 55

and the Euclidean unit sphere
sl ={xeR"; x| = 1},

where |x| = +/{x, x) is the Euclidean norm of the vector x = (x1,...,x,) € R", and we
denote the scalar product of x,y € R” by {(x,y) = x -y = 3}; x;¥;. Additional examples
of geometric shapes in R” include the Euclidean unit ball

B"={xeR"; |x| <1},

whose features are rather similar to those of the unit sphere, the cross-polytope which
is the convex hull of the 2n vectors

+eq,...,xe, € R,

and simplices, where an n-dimensional simplex in R" is the convex hull of n + 1 vectors
that affinely span R”. Here, e; € R" is the standard i unit vector. Note that a regular
(n — 1)-dimensional simplex is conveniently represented in R" as the convex hull of
e, ...,e, €R™

1.1 The unit cube

Consider the unit cube Q" = [-1/2,1/2]" € R". There are two relevant lengthscales
for this cube: its sidelength, which is 1, and its diameter, which is

I



Here, the diameter of K C R" is

diam(K) = sup |x —y|.
x,yeK

The +/n lengthscale is slightly more prevalent in the analysis of the high-dimensional
cube; if we are forced to compare the unit cube to a Euclidean ball of a certain radius,
then we should choose a ball of radius on the order of 4/n (or in some cases y/n/log n).
For example, what is the typical distance between two random points in the unit cube?
That is, let

X =(X1,...,X,) ~ Unif(Q")

and
Y =(1,...,Y,) ~ Unif(Q")

be two independent random vectors, each distributed uniformly in the unit cube Q".
We are interested in typical values of the random variable | X — Y|. Its L?>-norm is easy
to compute. Indeed, since Xy, ..., X,;, Y1, ...,Y, are independent random variables,
all distributed uniformly in the interval [—1/2,1/2], we have

VEIX -Y[2 = Ezn:(xi —Y)? = y/n-2Var(X,) = \/n/6.
i=1

The random variable | X — Y| is actually concentrated around the value /n/6, and in
fact, for any ¢ > 0, the probability that it deviates from this value by more than ¢ may
be bounded as follows:

e

for some universal constants ¢, C > 0. Inequality (1.1) shows that most of the mass of
the random vector X — Y is contained in a thin spherical shell of radius \/r% and width
O(1). Here B = O(A) means that |[B| < CA, where C > 0 is some universal constant.
Two sources for such concentration inequalities to be discussed in these lectures are
independence and convexity. Let us describe a proof of (1.1) which relies on statistical
independence: Observe that for any u € R and ¢ > 0,

\/ﬁ
u_ —_—
6

and hence (1.1) would follow once we prove that

> z) < Cexp(—ct?), (1.1)

>t >

|X_Y|2_n

N7 6 < Cexp(—ct?), (1.2)

>t




for some universal constants ¢, C > 0. Since the random variable
n
X =Y =) (X -Y)?
i=1

is a sum of independent, identically-distributed (i.i.d), bounded random variables,
the random variable |X — Y|? is approximately a Gaussian random variable of mean
n/6 and standard deviation C+/n. The deviation inequality (1.2) fits with this Gaus-
sian approximation; more precisely, it states that the random variable |X — Y|* has a
uniformly sub-gaussian tail, relative to its mean and variance. This follows from the
Bernstein (or Hoeffding) concentration inequality for sums of bounded, independent
random variables, which is the subject of a guided exercise below.

Our next question about the cube concerns the volumes of its hyperplane sections.
For any 6 € sn-1 writing 8+ = {x € R"; (x, §) = 0} for its orthogonal complement,
we have

1< Vol,_; (6* N Q") < V2 (1.3)

where the inequality on the left-hand side is due to Hensley [30] and equality is attained
when 6 = ¢;; there is a stronger version due to Vaaler [54] that follows from the Prékopa-
Leindler inequality which will be discussed below. The inequality on the right-hand
side of (1.3) is due to Ball [2] (see also the simpler proof in Nazarov and Podkorytov
[49]) and equality is attained when 8 = (1, 1,0, ..., O)/\/z.

We thus see that volumes of central hyperplane sections of the unit cube can fluc-
tuate between the values 1 and V2. What is the “typical value” within this interval

[1,v2]?
Claim 1.1. For a typical € S™', and in particular for 6 = (1, ..., 1)//n, we have

Vol,_; (6+ N Q") = \/%\/E (1+0(%)). (1.4)
T

Here, “typical” refers to the uniform probability measure on S"!, to be described
shortly.

Claim 1.1 is related to the classical Central Limit Theorem (CLT). Indeed, if
X = (Xl’ M Xn) ~ Unlf(Qn)a
i.e., the random variables X1, ..., X;,, ~ Unif([-1/2, 1/2]) are independent, then

0:X; = (X,0)
1

n

1

is approximately Gaussian for @ = (1,...,1)/+/n, as well as for other choices of a
vector of coefficients # € §”~!. More precisely, we have the following classical result:



Theorem 1.2 (CLT, version 1). Forany 0 € S" ' andt € R,

’P(Vﬁ(x,e) < t) - \/%/I o522 g
T J —00

where C > 0 is a universal constant. (Note that V12(X, 0) is a random variable of
mean zero and variance one.)

<c ) d, (1.5)
i=1

The usual proof of Theorem 1.2 involves the Fourier inversion formula, see e.g.
Feller [22, Chapter X VI] or the guided exercise below.

Ifo=(1,0,...,0) then }; 9;‘ = 1 and inequality (1.5) is vacuous. However, for a
typical 8 € sl including the case 8 = (1,...,1)/+/n, we have

Dot = 0(1), (1.6)
; n

which is the correct rate of approximation in the CLT for the high-dimensional cube.'

Let us provide a geometric interpretation of the CLT for the cube. Write fy : R —
[0, o) for the density of the random vector (X, 6). A moment of reflection reveals that

fo(t) = Vol,_y (He, N Q")

where
Hos = {x € R"; (x,0) = 1} (1.7)

is a hyperplane orthogonal to # € S"~! of distance |¢| from the origin. By Fubini’s
theorem, for s < ¢,

Vol,, ({x € Q"; s < {(x,0) <t}) = P(s <(X,0)<t) = /tfg(r)dr.

Thus Theorem 1.2 provides Gaussian asymptotic estimates for the volume of the inter-
section of the unit cube with various planks; a plank is the region in space bounded
by two parallel hyperplanes. Observe that

1 t
Efa (\/ﬁ) (t €R)

is the density of the random variable V12(X, ). Theorem 1.2 admits the following
variant:

11t is a better (faster) rate than the O (1/+/n) rate that we have for the CLT for the discrete
cube {—1, 1}"*, and which also appears in the Berry-Esseen bound, see Feller [22, Chapter XVI].



Theorem 1.3 (CLT, version 2). Under the assumptions of Theorem 1.2,

<C i g7,
i=1

1
8—12/2
b

'vlrzf(vtrz) "V

where C > 0 is a universal constant.

Theorem 1.3 with ¢t = 0 justifies Claim 1.1 above, and may be used in order to show
that the volume of typical central hyperplane sections of the cube concentrate around
the value \/6/_7r Thus, when considering volumes of hyperplane sections, we observe
a simpler behavior for the high-dimensional cube than for the cube in dimension 5,
say.

Let us also mention that the corresponding question of volumes of hyperplane
projections of the cube is easier to analyze; for any § € S"*~! we have the McMullen
formula (see [46]),

Vol,-1 (Proje-(Q™) = )" l6il, (1.8)
i=1

where Projg: : R" — 6+ is the orthogonal projection operator, i.e., Projgix = x —
{x,0)6.

1.2 The Euclidean unit ball and sphere

The unit cube in R” has volume one. By contrast, the volume of the Euclidean unit
ball B" = {x € R"; |x| < 1} is extremely tiny:

n

C(n/2+1)
This is usually proven along the lines of (1.15) below. We thus need to scale the Euc-
lidean unit ball by a factor of the order of v/n in order to obtain a body of volume one.
More precisely, the radius of the Euclidean ball of volume one is

_ —1/n \/ﬁ
K ~

n — Rn ~

(1.9)

b}

2me

since Vol,, (r,B") = r!" - k, = 1. We scale the Euclidean unit ball by a factor of y/n,
and consider a random vector

X ~ Unif(vnB™),

where AK = {1x; x € K} forA € Rand K C R".



Is it true that the random vector (X, #) is approximately Gaussian for 6 € §"~1,
like in the case of the high-dimensional cube?

The answer is yes. In fact, by symmetry, the distribution of (X, §) does not depend
on # € §"!, and we may write fy(¢) = f(¢) for the density of (X, #). Thus,

Vol,,_1(Hg,; N \nB")
Vol,,(\/nB")

with Hg, as in (1.7). When |¢| < +/n, the slice

fo(t) = (r €R),

Hgy, N \nB"

is an (n — 1)-dimensional ball of radius Vn — 12, by the Pythagoras theorem. Con-

sequently,
n-1
k1 (Vln =) ( z2)2
+

=cp|l-—
n2g, " n

f@) = (1.10)
with ¢,, = k,—1/(\nky,) = 1/V2x + O(1/n) by the Stirling formula. The proof of the
CLT for the uniform distribution on the cube requires indirect tools such as the Fourier
transform. In contrast, the case of the Euclidean ball is conceptually simpler, even
though the random variables X, .. ., X,, are no longer independent:”

Proposition 1.4. Foranyt € R,

C
S_3
n

‘f(t) _ L 1.11)

V2r

where C > 0 is a universal constant.

Proof. If |t| > n'/* then e~""12 < e=V1/2 < C /n while

n-1

2
)T L reenem (€
nl, = “n’

and the bound (1.11) holds true. If |¢| < n'/* then we may use the Taylor approximation
log(1 — x) = —x + O(x?) for |x| < 1/2, which yields

n—1 12 n—1¢ 4 12 4l
log|l-—|=-———+0|=|=-=+0 .
2 og( n) 2 n (n) 2 ( n )

ZWhen was it discovered that the marginals of the high-dimensional sphere are approxim-
ately Gaussian? Diaconis and Freedman [ 18, Section 6] searched in vain for this observation in
Poincaré’s writings, but found it in Borel’s book from 1914 in connection with the kinetic theory
of gas.




Therefore, for |t| < n'/4,

n-1
2

12 41
(1——) = exp [—r2/2+0( hl )
n + n

Where is the “bulk” of the mass of the high-dimensional Euclidean ball located?
One answer is “near the boundary”. Recall that a star body in R” is a subset K C R"
such that 1K € K for 0 <7 < 1. A property of the high-dimensional Euclidean ball,
or any star body in R”, is that most of its mass lies near the boundary. Indeed, when
X ~ Unif(B"), forany 0 <t <1,

Vol,, (tB™)
P(|X|<t) = ————= =1". 1.13
(Xl <1 Vol (B") (1.13)
It follows that for n > 2,
1 " 1
P(l——s|X|$1):1—(1——) > —. (1.14)
n n 2

We see from (1.14) that most of the mass of the unit ball is located at distance only
O(1/n) from its boundary, which is the unit sphere. Consequently, the distribution of
volume on the high-dimensional Euclidean ball is rather close to that on the high-
dimensional sphere, and results on S”~! can often be translated to corresponding
results on B" and vice versa.

Another answer for the above question is that the bulk of the mass of the high-
dimensional Euclidean ball (or sphere) is located near the equator, as we will now
explain.

We slightly prefer to work with the unit sphere $"~!, since it is a homogeneous
space, admitting a transitive group of symmetries. In other words, all points of the
sphere S"~! have an “equal status”, while the ball B" contains “special points” such
as the origin. What is the volume of the Euclidean unit sphere? By integrating in polar
coordinates,

1
1
Vol,,(B") = Vol,_1 (8" / " ldr = = - Vol,_1 (8" ).
0 n

We have thus established the following:

Claim 1.5.
Voln_l(S"_l) = nk,,.



We write o, for the uniform probability measure on S”~!. The probability meas-
ure 0,,_; can either be viewed as the normalized surface area measure on S~ !, or as
the unique rotationally-invariant (Haar) probability measure on $"~!.

It is quite common to replace spherical integrals with a Gaussian computation via
integration in polar coordinates. Indeed, let

Z: (le--,Zn)

be a standard Gaussian vector in R" (i.e., its components are independent, standard
Gaussian random variables). Let f : R” — R be a positively p-homogeneous function
(i.e., f(Ax) = AP f(x) for A > 0 and x € R"™) which is locally integrable. Then,

Ef(Z) = 2x)™"? /Rn f(x)e_lxlz/zdx
= 27)""? - nky, - /00 f(rH)e_‘rGP/zr"_ldrda'n,l(9)
0 Sn—l
= Cop /S  FOd ), (1.15)

where C,, , =2P/271 . n - T'("32)/T'(%£2). For instance, in order to show that a typical
vector 6 € "1 satisﬁes (1 .6), we may argue as follows:

/.. (Z 9?) do1(0) = -

i=1

1 3

! zn(n+2)' SR

as IEZ‘I1 = 3. See the exercises below for more information on the distribution of }; 9;‘
where @ = (64, ..., 0,) is a uniformly-distributed random vector in the sphere §*~!.
Another relation between the uniform measures on the ball and the sphere is the fol-
lowing fact, going back to Archimedes in the case n = 3.

Proposition 1.6. Forn > 3, if
X = (Xi,. .o, Xp) ~ Unif(s"™)

then
(X1, ..., Xn_2) ~ Unif(B"?).

An analytic way to prove this is to note that by calculus, (X, ..., X,—1) has density
on B"~! which equals &,/4/1 — |x|2. We now integrate the density of (X1, ..., X,_1)
along a suitable segment and obtain that the density of (X1, ..., X,,—2) at the point
y € B" %is
Vi-bE _dr L ds
=Cn

NTOF T- P -2 -1 V1 -2



which is independent of y € B"~2. Here we changed variables s = ¢/+/1 — |y|2.

Corollary 1.7. If X = (X1,...,X,) ~ Unif(S"™Y), then fort > 0,
P (ValX,| > 1) < Ce /2 (1.16)
where C > 0 is a universal constant.

ProofI. Since (X1, ..., X,_2) ~ Unif(B"~?), the density of vnX, equals

n-3

x2 2
Cn (1 ——) (x eR)
n +

with ¢, = 1/V2x + O(1/n). Hence, for 0 < t < v/n,

n-3

\/E 2\ 72 oo
P (VnlXi| > 1) = 2/ cn (1 - x_) dx < C/ o~ X (n=3)/(2n) g,
nj, t

t

For ¢ ¢ [1, /n] conclusion (1.16) is trivial, while for 1 < ¢ < v/n we may use that
/too xe X' 2dx = ¢=1"/2 and elementary manipulations to conclude (1.16). O

Proof I (which I essentially learned from Afonso Bandeira). We may assume thatt <
/n, since otherwise the probability in question vanishes. Since Y7, X[2 =1 we have

2 n 2
t t
P (IXi] > t/v/n) < P(X12+X222 —) =P X,.251——).
n n
i=3
The random vector (X3, ..., Xj,) is distributed uniformly in B" 2 according to Pro-
position 1.6. Therefore, by (1.13),
z 2 2\ 2 n- 2
PIY X2<1-—]= (1——) <e T <Ce’?
¢ n n
i=3
with C = e. O

In particular, we learn from Corollary 1.7 that when X ~ Unif(S"!),
P(|X;| > 1/10) < Ce™ ",

which is exponentially small in the dimension n. Thus,
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Proposition 1.8. Most of the mass of the high-dimensional sphere S~ is located
rather close to the equator
{x € sl x = 0},

i.e., at distance roughly O(1/~+n) from this equator. By the symmetries of the sphere,
the same applies for any equator

{x e s (x,0) =0},

with 6 € S"~ 1.

This startling high-dimensional effect is a manifestation of the concentration of
measure phenomenon on the high-dimensional sphere.

1.3 The isoperimetric inequality on the sphere

The isoperimetric inequality on the sphere allows us to make effective use of this
concentration phenomenon. For A C §"~! and & > 0 consider the &-neighborhood of
the set A, defined as

Ag = {x e S d(x, A) < s}

where d(x,A) =infyca d(x,y) and d(x,y) = |x — y|is the Euclidean distance between
x,y € 8"~!. Another option is to work with the geodesic distance on the sphere, namely
p(x,y) = arccos{x, y) € [0, r]. The Euclidean distance (also called here the “tunnel
distance”) is always shorter than the geodesic distance, though not by much: itis shorter
by a multiplicative factor that does not exceed 7/2. These two distances are essentially
equivalent for our needs; note that cos p(x,y) = 1 — d?(x,y)/2.

For example, the e-neighborhood of the hemisphere
H={xes"";x <0},

is
H, = {xES"_l;xl SS'\/1—82/4}.

Clearly 0,1 (H) = 1/2, while by the concentration of measure bound (1.16),
Ot (Hy) = P(X; <e-1-e2/4) > P(X; <e/2) > 1-Ce™ ", (1.17)

Thus, the measure of the e-neighborhood of the hemisphere is very close to one if,
say, € = 1/10 and n is large. The isoperimetric inequality of P. Lévy [25, 52] states
that among all sets of 0, -measure equal to 1/2, the hemisphere minimizes the meas-
ure of the e-neighborhood. Since the g-neighborhood of the hemisphere already has
relatively large measure, this fact has far-reaching consequences.
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Theorem 1.9 (spherical isoperimetric inequality). For any measurable subset A C
S and any € > 0,

(N2 5 = (A 2 0w (He) (118)

where H C S"~! is a hemisphere. Moreover, for any 0 < t < 1,
O-n—l(A) >t Ead O-n—l(As) = O-n—l(H‘(et))

where H®) C §"1 is a spherical cap with o, (H®) = t. A spherical cap is the
intersection of S"~' with a half-space in R".

There are several proofs of the spherical isoperimetric inequality; two symmetriza-
tion proofs are explained in Benyamini [5] and in the Appendix of Figiel, Lindenstrauss
and Milman [23]. We will discuss the proof of Theorem 1.9 in the next lecture. Thanks
to Theorem 1.9 and the bound (1.17), we may leverage the concentration of measure
phenomenon as follows:

Corollary 1.10. Forany A C " ' and € > 0,
1
Tn-1(A) > 3 = On-1(Ag) > 1 — Cexp(—ce’n), (1.19)

where C, c > 0 are universal constants.

The constant 1/2 in (1.19) may be replaced by 1/10 or any other universal constant,
at the expense of adjusting the values of the universal constants C and c. Corollary
1.10 tells us that for any measurable set A € §”~! with 1/10 < 0,1 (A) < 9/10, most
of the mass of the sphere is located near the boundary of A, i.e., at distance on the
order of O(1/+/n) from the “non-linear equator” dA. This provides a rather striking
answer to our question: where is the “bulk” of the mass of the high-dimensional sphere
located?

While Theorem 1.9 is not too difficult to prove, in these lectures we will only prove
the weaker Corollary 1.10, which would suffice for all of our needs. Our proof is based
on the classical Brunn-Minkowski inequality from 1887:

Theorem 1.11. (Brunn-Minkowski) Let S,T C R" be non-empty Borel sets. Then,
Vol,, (S + 7)™ > Vol,,($)/™ + Vol,,(T) /", (1.20)

where S +T = {s+t; s €8S,t €T} is the Minkowski sum.>

3The Minkowski sum of two Borel sets in R” is Lebesgue measurable. For more information,
see e.g. the first pages in Carleson [15]. Observe that by inner regularity of the Lebesgue measure,
the Brunn-Minkowski inequality for Borel sets follows from the corresponding inequality for
compact sets.



Note that for any convex set K € R" and ry,r, > 0,
rnK+rK = (ri+r)kK. (1.21)
In fact, (1.21) is the very definition of a convex set. Therefore, when K is convex,
Vol,, (ri K)'™ = r; - Vol,, (K) /™ (i=1,2)
while
Vol,, (r1 K + rK)'/™ = (ry + r2) - Vol,, (K)'/".

Thus equality holds in the Brunn-Minkowski inequality when S and T are r1 K and
r K, respectively. In fact, when S and T are assumed compact, equality in (1.20) holds
true if and only if S and T are convex and homothetic, see Henstock and Macbeath
[32]. Thus the Brunn-Minkowski inequality is closely related to convex sets, even
though convexity does not appear in its formulation. A dimension-free corollary of
the Brunn-Minkowski inequality is the following:

Corollary 1.12. For any Borel sets S,T CR" and0 < A< 1,
Vol (1 = 2)S + AT) > Vol(S)' ~Vol(T)*. (1.22)

This multiplicative Brunn-Minkowski inequality holds true also when S or T are
empty, as opposed to Theorem 1.11. In order to prove (1.22), say in the case 4 = 1/2,
we apply Theorem 1.11 and the arithmetic/geometric means inequality as follows:

1/n 1/n 1/n 1/n
S+T Vol,, (S Vol,, (T /
Vol,, (%) > Yolu($) % + Vol (T) 2(\/Voln(S)Vol,,(T)) .

2

The case of a general A € (0, 1) is similar.

Proof of Corollary 1.10 using the Brunn-Minkowski inequality. We follow Gromov and
Milman [26]. We may assume that n > 3 and

e>2/\n (1.23)

since otherwise the conclusion is vacuous. Let A € S"~! satisfy o,_1(A) > 1/2, and
let B C S"! be the complement of A.. Thus, forx € Aandy € B,

lx —y| = &. (1.24)

In order to use the Brunn-Minkowski inequality on volumes in R" we need to pass
from (n — 1)-dimensional subsets of the sphere to n-dimensional sets in the unit ball.
Fortunately, the uniform probability measure on the sphere is very close to that of the
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ball. That is, consider the following slight radial extension of the sets A and B into the

unit ball:
s= |J A 1= [J rB
1-L<r<i I-g<r<l
Then,
Vol,, (S) on-1(A) _ 1
——=(1-(=-1/n")op-1(A) 2 —— = - 1.25
Vo gy = (= (=1 o)z P52 =0 (129)
and similarly
Volu(T) _ ou-1(B) (1.26)

Vol, (B"*) — 2
By (1.23) and (1.24), foranyx € Sand y € T,

2
lx—y|l>e—-—=>ce
n

for, say, ¢ = 1/4. Since x and y are far apart, the uniform convexity of the sphere implies
that their midpoint is deep inside the ball. That is, for any x, y € B" with |x — y| > ce,

|X+y| o il N G e | PR
2 1 -

for some universal constant ¢ > 0. Hence,

S+T
cVi-¢e2-B" (l—ca) B".

Consequently, from the multiplicative Brunn-Minkowski inequality,

(1-

R Vol, ( ) N \Vol,, (S)Vol,, (T) . \/ ou_1(B)

Vol,(B") = Vol,(B") 4 2

where we used (1.25) and (1.26) in the last passage. Hence,
- O-"—I(As) = O-n—l(B) < C(l - C_Sz)n < Ce_észn’

and (1.19) is proven. |

This proof of Corollary 1.10 relies heavily on the uniform convexity of the Euc-
lidean ball/sphere, the fact that the midpoint between two points in the ball that are far
apart, must lie deep inside the ball. It admits generalization to other uniformly convex
sets, see the exercises below.
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Hadwiger-Ohman proof of Theorem 1.11. Consider first the case where S,T C R are
two parallel boxes, of edge length a1, ...,a, > 0and by, ..., b, > 0 respectively, we

have
n

Vol, (S +T) = ]_[(a,- +b;).
i=1
Here the boxes may be open or closed; for concreteness let us work here with boxes
of the form []_, [¢;, d;) where ¢; < d; for all i. The Brunn-Minkowski inequality for

two parallel boxes thus amounts to the inequality

n 1/n n 1/n n 1/n
(l_[(ai + bl)) > (1_[ ai) + (l_[ bi) .
i=1 i=1 i=1

This inequality follows from the arithmetic/geometric means inequality, since

n 1/n n b 1/n | n
4 i
(l_[ai+bi) +(1_1[ai+b,-) SZ;

a; + b[
a; + bi a; + bi

=1. (127

i=1 i=

‘We move on to the case of general S and 7. By approximation, we may assume that
both S and 7" can be written as the union of finitely many disjoint boxes, all parallel
to the axes. Consider representations of S and of T as disjoint unions of finitely many
boxes, and write N for the number of boxes appearing in the representation of S plus
the number of boxes appearing in the representation of 7. We prove (1.20) by induction
on N.

Since S and T are non-empty, the base of the induction is the case N = 2. In this
case, S and 7 must be two parallel boxes, and the Brunn-Minkowski inequality follows
from the arithmetic/geometric means inequality (1.27).

Suppose that N > 3. Then the representation of the S or of the set T consists of at
least two disjoint boxes; without loss of generality assume that it is the set S. Let Q
and Q be two disjoint boxes from the representation of S. A crucial observation is that
since the boxes Q and Q are disjoint, there exists a hyperplane

HCR"

parallel to the axes that separates Q from Q. Writing H of the form {x € R" ; x; = 1}
forsomei=1,...,nandt € R, we look at the half-spaces,

Hy={xeR"; x; <t}, Hy, ={x e R"; x; > t}. (1.28)

These are two disjoint half-spaces whose union equals R”. Each of these two halfspaces
is disjoint either from the box Q or from the box Q. For i = 1,2 denote

Si=SNH,.
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Clearly, S; may be represented as a disjoint union of finitely many boxes; in fact, each
of the boxes of S contributes at most one box to the representation S;, with either Q or
O not contributing at all. Thus the total number of disjoint boxes in the representation
of S; is strictly smaller than in the representation of S. Set

_ Vol,, (Sl)
~ Vol (S)

VOln(SZ)
1 |- = 22mlBa)
€ . 1), Vol,,(S)

For s € R we consider the hyperplane A = H(s) = {x € R"; x; = s} that is parallel
to H, and we define A, = H,(s) and H, = H,(s) analogously to (1.28), i.e., with ¢
replaced by s. Consider the fraction

Vol,,(T N H(s))

oL D) (1.29)

When we let s vary continuously, the fraction in (1.29) varies continuously from 0
to 1. By the mean value theorem, there exists a hyperplane H parallel to H such that
denoting

T; =T N H; (i=1,2)
we have

Vol (Ty) 1 - 1= Vol (T»)

Vol,(T) "~ Vol ()"

For i = 1,2, the set 7; may be represented as a disjoint union of finitely many boxes,
where each of the boxes in the representation of 7' contributes at most one box to the
representation 7;. Thus the number of boxes in the representation of 7; is not larger
than in that of 7.

Hence the total number of boxes in the representations of S; and 7; combined is at
most N — 1. By the induction hypothesis,

Vol,, (S; + )" > Vol,,(S))'/™ + Vol,,(T;) '/

Observe that the Minkowski sum S; + 7; is contained in the set H; + H;, which is a
halfspace. Moreover, the halfspace H» + H, is the complement in R” to the halfspace
H, + H,. Consequently S; + Ty and S, + T» are two disjoint subsets of S + 7. Thus

2
Voly (S +T) = ) Vol (Si +Ti) = )" (Vol (8;)'™ + Vol (T;) /)"
i=1 i=1

— A+ (1-2)] (Voln(S)l/" + Voln(Ti)]/")

2
n

completing the proof of (1.20). O



The Brunn-Minkowski inequality implies the isoperimetric inequality in R”, as we
shall now explain. Let A € R” be an open set with a smooth boundary. For 0 < ¢ < 1,
the Minkowski sum

A+ ¢eB"

equals the e-neighborhood of A, which is of course the set
Ag={xeR";d(x,A) <&}

where d(x,A) =infyc 4 |x — y|. Assuming that A is bounded and connected, it is proven
in multivariate calculus class that

(1.30)

Vol,,_i (0A) = lin(} Vol (Ag) - Voln(A)‘
-0t c

Corollary 1.13. For any connected, bounded, open set A € R" with a smooth bound-

ary,
Vol,-1(94) _ Vol,_1(9B)

Vol (A)%" ~ Vol,(B)%"

where B C R" is any Euclidean ball. Moreover, if B C R" is a ball with Vol,,(B) =
Vol,,(A) then for any &€ > 0,

(1.31)

Vol,(A,) > Vol,(B,). (1.32)

Proof of Corollary 1.13. We prove (1.32) by the Brunn-Minkowski inequality as fol-
lows:

Vo, (A.) = Vol (A +&B") > [Vol,(A)'/" + Vol (sB™)'/"]" (1.33)
= [Vol,(B)"/" + £Vol,(B")/"|" = Vol,,(B + B") = Vol,(B.),
where we used the fact that B is homothetic to B" and convex, and this yields equality
in Brunn-Minkowski.
In order to deduce (1.31), we use that Vol,,_; (S"~!) = nVol,,(B") and hence
Vol,,_1 (0B Vol,,_1 (0B"
o 1( ,,_]) _ O 1( ,,_]) — nVOIn(Bn)l/n
Vol,,(B) =  Vol,(B*) =

Consequently, by (1.33), for any € > 0,

Vol, (Ag) = [Vol,(A)/" + &Vol,(B")]"
= Vol, (A) + neVol, (A) "+ Vol,,(B") 7 + o(&)
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as € — 0. Therefore, from formula (1.30) for the surface area,

. w1 Vol,_1 (3B
Vol,_1 (JA) > nVol,(A) "= Vol (B")# = Vol,(A)" - 0—1(1)
Vol,(B) =

Convex sets K € R" come to the world in pairs; this is especially true for centrally-
symmetric convex sets or convex cones. A convex body K € R" is centrally-symmetric
when K = —K. We recall that the polar body to a convex body K € R" containing the
origin in its interior is

K°={xeR";Vy ek, (x,y) < 1}.

We have (K°)° = K with K = K° if and only if K = B" (exercise). When K is a
polytope, there is a one-to-one correspondence between the vertices of K and the
(n — 1)-dimensional facets of K°. In particular, the number of vertices of K equals
the number of facets of K°.

The bodies K and K° are kind-of “inverses” to each other. For instance, for any
invertible, linear map 7 : R" — R",

(T(K))° = (T™H)*(K°).

Theorem 1.14 (The Santalé and Bourgain-Milman inequalities). For any centrally-
symmetric convex body K C R",

¢"Vol,, (B")? < Vol,(K)Vol,(K°) < Vol,,(B")?, (1.34)

where ¢ > 0is a universal constant. Infact, c = 1/2 works according to Kuperberg [42].

The left-hand side inequality in (1.34) holds true without the central-symmetry
assumption, assuming only that 0 lies in the interior of K. The right-hand side inequal-
ity in (1.34) holds true whenever K € R" is a centered convex body, i.e., its barycenter
lies at the origin. The Mahler conjecture [44,45] suggests that ¢ = 2/7 should work
in (1.34), this was proven thus far for n = 2, 3, see Iriyeh and Shibata[33]. For a sym-
metrization proof of the right-hand side of (1.34) see Meyer and Pajor [47], and for a
particularly elegant simplification of Kuperberg’s proof of the left-hand side of (1.34)
see Berndtsson [6].
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Exercises.

(1) Bernstein inequalities (closely related to Bennett, Hoeffding and Chernoff
inequalities; see [56, Chapter 2]): Let M > 0 and let X1, . . ., X,, be independ-
ent random variables. Assume that EX; = 0 and P(|X;| < M) = 1 for all i. We
will prove that for all ¢ > 0,

n

S

i=1

P > (v | < Ce /M)

where ¢, C > 0 are universal constants. By scaling, we may reduce matters to
the case M = 1.

(a) We will apply Markov’s inequality for exponential moments. Begin by
proving that for any s > 0,

i k
Ee*X ZZ@SeS—SSeSi
k=0 ’

where the last inequality is obvious for s > 1 and follows from ¢® < 1 +
s+s2<s+e for0O<s<l.

(b) Given ¢ > 0, find an appropriate s > 0 so that

n
ZX,‘ >t
i=1

(2) Recall the proof of (1.9) that you might have learned in your undergraduate
studies:

P =P (ezlr'lzl sXi > e”) <e S EesXi < o=17/(4n)

n

i=1

(27r)”/2 =/ e~ P2 gy =V01,,_1(S"_1)-/ e 21y
" 0

= nk, - 2D 2r(n)2).

(3) Show that ¢, from (1.10) satisfies ¢, = 1/V2r + O(1/n) without using the
Stirling formula, but rather by using the Taylor approximation (1.12) as well

as the formula
N 2\
cglzt/. (1—-—) dr.
—\n n

(4) In this exercise we outline the proof of Theorem 1.3 in the case

(1,...,1)
Vi

0= e st 1,
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(a) Abbreviate f(t) = fg (t / \/ﬁ) /V12, write sinc(x) = sin(x) /x and assume
that n > 2. Use the Fourier inversion formula in order to show that for

teR,
1 *© 3 .
f@) = —/ sinc” (\/jx) e dx.
27 J_o n
1 712/2 1 /\00 . n \/g 7x2/2
f) — — < — . x| =
f() @e N sinc nx e

(b) We bound the integral in (1.35) by C/n by dividing it into three intervals.
Consider first the interval |x| < n'/%, and use Taylor’s theorem in order to
show that in this interval, the integrand in (1.35) is at most C%e"z/z.

(c) Bound the integral in (1.35) also for n'/* < |x| < v/n and for |x| > v/n and
conclude the proof.

(5) Let Y ~ Unif(S§" "), and let Z ~ N(0, 1) be a standard Gaussian. Prove that

for any t € R,

Conclude that

dx. (1.35)

[P (VnY: <t) - P(Z<1)| < %

6) () Let® = (0y,...,0,) € S"! be a uniformly distributed random vector.
Show that

P

c C

Z@? > ;) < exp(—cvn)

i=1
for some universal constants C, ¢ > 0.
(Hint: maybe try to show thatE ( ) Ff)p <(Cn)?forp <cynandly,...,T,
being i.i.d standard Gaussians, using that EF;.”‘ < (Ck)? ).

(7) For aconvex polygon P C R? and ¢ > 0 and for the unit disc D = {x € R?; |x| <
1}, prove that for any ¢ > 0,

Area(P +tD) = Area(P) + 1 - Length(dP) + nt°.

(8) Use the Brunn-Minkowski inequality in order to show that for any convex body
K C R” that is centrally-symmetric (i.e. K = —K) and any 6 € §"~ !, 1 € R,

Vol,,_1(K N 6*) > Vol,,_ (K N (6 + 67F)).

(9) Let K € R" be a centrally-symmetric convex body (i.e., K = —K), and consider
the norm ||x||x = inf {1 > 0; x € AK} whose unit ball is K. The modulus of
convexity of K is defined for 0 < £ < 1 via

xX+y

2 HK

6(3):inf{1—H ;x,yEK,Hx—y”KZs}.
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(a) Verify that if K C R”" is an origin-symmetric ellipsoid, then §(g) > £2/8.
(b) Write ug for the Lebesgue measure on K, normalized to a probability
measure. Prove that for any measurable set A C K with ug (A) > 1/2 and

any € > 0,
pr(Ag) > 1 —2e7219(#),

where A, = {x eR";infyeqa |lx — yllx < e} is the e-neighborhood of A
with respect to the norm || - || k.
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Lecture 2

Spherical concentration and the thin shell theorem

In this lecture we discuss applications of the spherical concentration of measure phe-
nomenon in high-dimensions. We begin with the following corollary of Lévy’s iso-
perimetric inequality:

Theorem 2.1 (“spherical concentration of Lipschitz functions”). Let f : S"! — R
be an L-Lipschitz function, i.e., | f(x) — f(y)| < L|x — y| forall x,y € S"~'. Consider
the average of f on the sphere, namely,

E = de'n_].
Ssn-1

Then for any t > 0,
On1 ({x €S |f(x) - E| > t}) < Cementt/L)?) 2.1
where C, ¢ > 0 are universal constants.

Theorem 2.1 implies that 1-Lipschitz functions on the high-dimensional sphere
behave, in certain respects, as if they were nearly constant. Apriori, one might expect
such a function to attain values across the entire interval [0, 1], for instance. However,
if we sample five random points from the sphere and evaluate a 1-Lipschitz function
[ at those points, the resulting values will be very close to each other, differing by at

most O(1/+/n).

Proof of Theorem 2.1. We may assume that L = 1 (otherwise, replace f by f/L).
Abbreviate {f <t} = {x € §"~!; f(x) <t}. Let M > 0 be a median of the function

f,ie.,
o1 ({f £M})21/2 and o ({f 2 M}) 2 1/2.

(not that it matters, but the median of a continuous function is uniquely determined).
Set A = {f < M}. Observe that

A C{f <M +1},

where A, = {x esm 1, infycq|x -yl < t} is the z-neighborhood of A. Since 0,—1(A) >
1/2, by the spherical isoperimetric inequality that we proved in the previous lecture,

Cact({f <M +1}) > on_1(A) 2 1 = Ce™n, 2.2)
Similarly, since the t-neighborhood of {f > M} is contained in {f > M — ¢},

Cnt({f 2 M —1}) > 1 - Cecn. 2.3)
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From (2.2) and (2.3), for any ¢ > 0.
Tt ({If = M| 2 1}) < Ce™e"™, (2.4)

The expectation of f is rather close to the median. In fact, by (2.4) and Jensen’s inequal-
ity,

E-M=|[ fdow,-M|< / \f = M| do
Sn—l Sn—l
« ® —ct’n C
= on-1 {If M| =1t})dt < Ce dt < —.
0 0 \/ﬁ
This implies that for any ¢ > 0,
Ta1({|f - E| 2 1}) < Ce™", (2.5)

Indeed, if ¢ < 1/+/n then the right-hand side of (2.5) can be assumed at least 1, while
if t > 1/4/n, then we may use our bound for |E — M| and note that

xesS" 'V |f(x)—E|=t} € {xeS" ' |f(x) - M| > Ct}.

Now (2.5) follows from (2.4). O

As we see from the proof of Theorem 2.1, we may replace the expectation E in
(2.1) by the median M, as well as by other “central values” of f, like the L?>-norm of
f when it’s non-negative; see the exercise below.

Remark 2.2. Concentration effects go beyond Lipschitz functions, and that it usually
suffices to assume that the function f is “Lipschitz on average”. For example, the
Poincaré inequality on the sphere states that if £ : $”~! is a smooth function (or just
locally Lipschitz) and /S"‘l fdoy,—1 =0, then

Py < [ 9sPdo. 26)
Ssn-1 n—1 sn—1

Equality holds in (2.6) if and only if f(x) = x - 6 for some 6 € R". This is proven
by analyzing spherical harmonics and the spherical Laplacian, see e.g. Miiller [48].
There are also LP-versions of the Poincaré inequality (2.6) where f2 and |V f|* are
replaced by | f|P and |V f|?, respectively. A strong and useful inequality is the log-
Sobolev inequality on the sphere, see e.g. Bakry, Gentil and Ledoux [1]. As we will
see later on, the Poincaré inequality (2.6) implies sub-exponential concentration of
Lipschitz functions, which is considerably weaker than the sub-Gaussian concentration
of Theorem 2.1.
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Our main application of the spherical concentration of measure phenomenon is
a version of the “thin-shell theorem” of Sudakov [53] and Diaconis—Freedman [17].
This theorem offers additional insight into why the Gaussian distribution arises in the
central limit theorem.

Let X = (Xi,...,X,) be arandom vector in R” with E|X|?> < co. We say that X is
isotropic or normalized if

EX,‘=O, EXin=(5i,j Vi,j=1,...,n,

or in short if
EX =0 and Cov(X) =EX® X =1d,

where x ® x = (x;x;); j=1,...n € R™ forx € R". Equivalently, a random vector X is
isotropic if for any 6 € §"~!, the marginal random variable (X, 8) has mean zero and
variance one.

Any random vector X satisfying mild conditions can be made isotropic by applying
to it an appropriate linear-affine transformation (exercise!). Thus, isotropicity is just
a matter of normalization of the random vector; we need to center it and then stretch
or shrink it linearly in some orthogonal directions in order too make it balanced in all
directions in terms of variance of marginal distributions.

Theorem 2.3 (Thin-shell theorem). Let X be an isotropic random vector in R", and let
Z be a real-valued, standard Gaussian random variable. Assume that for some & > 0,

2
X
E (u - 1) <& (2.7)
n

Then there exists a subset A C 8"~ with o,_1(A) > 1 — C exp(—cn), such that for
any € Aandt € R,

1
P(X-0<t)-P(Z<1)|<C (81/2 + m) , (2.8)

where C,c > 0 are universal constants.

The exponents 1/2 and 1/8 on the right-hand side of (2.8) are non-optimal. Bobkov,
Chistyakov and Gotze [10, 1 1] used the Fourier transform as well as other techniques,
and essentially obtained Ce? log n on the right-hand side of (2.8), with a slightly dif-
ferent definition of &, and with a slightly different probabilistic estimate on 6.

What is the meaning of condition (2.7)? By the Chebyshev—Markov inequality,
this condition implies that

X
P 1—x/§5us1+\/5 >1-¢.
\n
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Thus, when € < 1, condition (2.7) implies that the bulk of the mass of X is concentrated

in a thin spherical shell.

Theorem 2.3 tells us that in order to have many approximately Gaussian marginals,
it suffices to verify that most of the mass of the random vector X is contained in a thin
spherical shell whose width is much smaller than its radius. The fact that the radius
must be 4/ is dictated by the isotropic normalization of X. From the proof of Theorem
2.3 one can see that the thin-shell condition (2.7) is also necessary for the Gaussian
approximation phenomenon of the majority of the marginals.

Examples.

ey

(@)

3)

“)

Consider the case where X = (X1, ..., X,) and Xj, ..., X,, are independent
random variables with, say, EXI.2 =1 and ]EX? < 100 for all i. The thin-shell
condition (2.7) holds true with a rather small €. Indeed, we may compute that

2 2 2 2 n 2

X X X X:

ELLlsELL—1=WrU—:ZWr4

Vn n n e n
100

1 < 4

Thus the standard deviation of | X|/+/n is at most 10/+/n, and (2.7) holds true
with & = O(n™1/?), i.e., the width of the thin spherical shell that contains most
of the mass of X is only O(1/+/n) times its radius. Theorem 2.3 thus implies
that many of the marginals of X are approximately Gaussian, in accordance
with the classical central limit theorem.

Consider a regular simplex circumscribed by the sphere vnS"~!. Let X be a
discrete random vector in R”, uniformly distributed on the n + 1 vertices of
this simplex. Note that X is isotropic, and that the mass of X is concentrated
in a thin-spherical shell of width & = 0. Thus, by Theorem 2.3, most of the
marginals of X are approximately Gaussian.

Tomorrow we should discuss a recent proof that the uniform distribution on
any convex set in R”, when isotropic, satisfies the requirements of Theorem
2.3 with & = C/+/n, see Klartag and Lehec [40].

A non-example: Let Y be a random vector distributed uniformly on the sphere
S§"=1 and let 7 be a symmetric Bernoulli random variable, independent of Y,
ie,P(r =0) =P(r = 1) = 1/2. Define

VEY, ift=0,
X =
Iy, ifr=1
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Observe that X is an isotropic random vector that does not satisfy a good
thin-shell estimate, since it assigns mass 1/2 to each of two spheres of very
different radii. Consequently, the marginals (X, #) are all far from Gaussian:
each of the two spheres contributes an approximately Gaussian component to
the marginal, but their variances are very different. Hence the density of the
marginal X - 6 is the average of two Gaussian densities with very different
variances, i.e., it is approximately
l Le_tz + Le_tz/?’

2V Var ’

which is not close to Gaussian.

The proof of Theorem 2.3 has the following structure: First, we show that a certain
observable, defined as a function on the sphere, is concentrated around some unknown
value. Then, in order to identify this value, analyze the expectation of the observable.
Our observables would be Lipschitz approximations for the functions

S50 P(X-0<1) (2.9)

for t € R. The function in (2.9) is not necessarily continuous in general, but as we will
see it admits good Lipschitz approximations. We begin the proof of Theorem 2.3 with
the following:

Lemma2.4. Let X and & be as in Theorem 2.3, and letY ~ Uni f(S"~'). Let f :R - R
be an L-Lipschitz function. Then there exists a subset ® C S with 0,,_1(0©) > 1 —
C exp(—c+/n) such that for any 6 € ©,

[Ef(X-6) - Ef(\/ﬁYl)IsCL(nl% +g). (2.10)

Proof. For simplicity assume that X has no atom at the origin; it is an exercise to
go over the proof below and eliminate this requirement. We may assume that Y is
independent of X, since this assumption does not change the values of the various
expressions in (2.10). For § € §*~! denote

F(0) =Ef(X - 6).

Let us observe that F is an L-Lipschitz function on the sphere. Indeed, for any 61, 6, €
Sn—l ,

[F(61) = F(62)| <E|f(X-61) = f(X-602)| < LE|X - (61 — 62)]

< LVE|X - (61— 6)|*> = L|6) — 62,
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since X is isotropic, and hence the random variable X - (6 — 6,) has variance |0; —
6,|2. The function F is L-Lipschitz, hence it deviates very little from its average on the
sphere. In particular, by using Theorem 2.1 with t = L/n'/*, we deduce the existence
of a subset ® C 5! with 0,_; (®) > 1 — C exp(—c+/n) such that

<L 2.11)

Vo € O, ’F(G) - / Fdo, 1| < — .
Sn—l n /

The next step is to estimate the average of F on the sphere, and connect it with
Ef(+/nY}). To this end, we observe that the two random variables

(X/1X],Y) and Y (2.12)

have the same distribution, by the rotational-invariance of the uniform measure on the
sphere. Indeed, Y; and (Y, 8) have the same distribution for any fixed 6 € s and
the same holds when we replace the fixed # € §”~! by any random vector supported
in §”~! that is independent of Y.

Moreover, the random variable (X /| X|,Y) is independent of X. Thus, since the two
random variables in (2.12) are equidistributed, the same holds when we multiply each
of them by | X|. It follows that the random variables (X, Y) and |X|Y; are equidistrib-
uted. Therefore,

/ Fdo,_1 =EF(Y) =EBf(X -Y) = Ef(IX|Y}). (2.13)
Ssn-1

Our main assumption (2.7) implies that the random variable | X| is typically very close
to v/n. Thus,

[EF(XIY) - Ef (VaY))| < L -E|(IX] = Vi) 1i]

< L\En¥? - \JE (IX|/vi - 1)° < Le,

as Ele = 1/n. Combining the last inequality with (2.11) and (2.13), the proof is com-
pelte. O

Recall from the first lecture that the density of the random variable y/nY] is

-
t
Cl’l(l__) 5
n

where C,, = 1/V27 + O(1/n), and that if Z is a standard Gaussian random variable
then for all r € R

|P(VaYi <1) - P(Z<1)| < % (2.14)
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Proof of Theorem 2.3. Set § = max{+€,n~'/8}. For r € R consider the function

1 x <t
Li(x)=3 1-(x-1)/6 xe€e][tt+0]
0 X>t+0

Then I, is a (1/§)-Lipschitz function, and
P(X-60<t) <EL(X-0) <P(X-0<t+9). (2.15)
From Lemma 2.4, for any ¢ € R there exists A; C S"=1 with
Ono1(A) > 1= Ce V" (2.16)
such that for any 6 € A,
[EL (X - 6) — EI,(VnY1)| < C - % . (n_1/4 + s) < CV6. (2.17)
Our goal is to leverage (2.17) and show that there exists a subset A C §"~! of large
measure such that forall 8 € A andr € R,
IP(X-0<1) - P(Z<1)|<CV5. (2.18)
Step 1. We would like to replace /nY; in (2.17) by Z. By the definition of I, and
by (2.14),

P(Z <t) - C/n <P (VnY, <t) <ELL(VnY))
<P(VnY  <t+6) <P(Z<t+6)+C/n. (2.19)

Moreover,
t+0 1 2/2 1
|]P>(ZSt+<5)—P(Zsr)|=/ —e " fdx < —6<6.
¢ V2r V2
Thus by (2.19),

EI, (VaY)) :]P’(ZSt)+0(6+%) =P(Z<1)+0(5).

Consequently, from (2.17), for any 8 € Ay,
|EL(X - 6) — P(Z <1)| < CV6. (2.20)

Step 2. We would need to take care simultaneously of all values of ¢. To this end,

we write
t e—x2/2

dx.
o V21

o) =P(Z<1) =
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Consider the Gaussian d-quantiles
ti=®(i-6) fori=1,....k:=[1/8]] -1,
so k < n'/3. Then
P(Z<tj)=jo forj=1,...,k.

Set also ) = —oo and 11 = +o0. Consider the event

A, < !

k
A =

i=1

which by (2.16) satisfies
on-1(A) =21 -k - Ce_c‘/ﬁ >1- Cnl/se—c\/ﬁ >1-— C’ve—éx/ﬁ'

We are now in a position to prove (2.18). Pick § € A andr € R. There exists j =0, . . .

such that ; <t < tj4. Thus, by (2.20),
P(X-0<1)<P(X-0<t;)<El, (X 0) <P(Z<tj)+CVs
<P(Z<t)+CV5+86=P(Z<1)+0(5),

which proves one half of the desired inequality (2.18). For the other half, leti =0, . .

be such thatt; <t — 6 < t;+1. Thus,
P(X-0<t)2P(X-0<t;+06)2El, (X 0) ZP(ZSt,-)—C\/g
>P(Z <1) - CVs,

completing the proof of (2.18).

Exercises.

(1) Let X be a random vector in R with E|X|? < co that is not supported by
a hyperplane. Prove that there exist a vector b € R" and a positive-definite

matrix A such that A(X) + b is isotropic.

Lk

Lk

(2) Eliminate the requirement that P(X = 0) = 0 from the proof of Lemma 2.4.

(3) Let (Q,P) be a probability space, and let fi,. . ., f, € L?>() be an orthonormal
system such that 3" , fl.2 = 1, Prove that there exist coefficients (61,...,0,) €

S"~1 such that f = Y., 0; f; satisfies

t
P(f<t) - \/%/ e gs
T —00

< (teR)

C
P
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where m is the Lebesgue measure. (We remark that there are many non-trivial
examples of such orthonormal systems. For instance, any orthonormal basis
of the space of spherical harmonics of a certain degree and dimension.)

(4) For a non-negative function f : S"~! — R, replace E in Theorem 2.1 by

\//Sn—l fzdo'n—l-

(jargon: any a with |a — E| < L/+/n may be called a “central value” of f).
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Lecture 3

Log-concavity and the Bochner method

Which probability measures in high dimensions enjoy concentration phenomena?
With respect to which probability measures on R” Lipschitz functions are concen-
trated near their expectation? For which measures on R” most of the mass is located
near “any equator”, and perhaps even “non-linear equators” which are hypersurfaces
partitioning space into two parts of equal mass?

Yesterday we considered the case of the uniform measure on the sphere unit ",
as well as the closely related uniform measure on the Euclidean unit ball B". Further-
more, we know that when

X = (X1,...,X,) ~ Unif(¥/ns"1)
and n is very large while k£ = o(n), the random variables
Xi,..., Xx € RF

are approximately independent standard Gaussian random variables in the total vari-
ation distance (see Diaconis and Freedman [18, Section 6] for this statement and its
history). Thus the standard Gaussian probability measure on R" enjoys strong con-
centration properties, which it inherits from the high-dimensional sphere (see exercise
below for a better proof of Gaussian concentration of Lipschitz functions).

There are concentration inequalities available for product measures (i.e., independ-
ent random variables), in particular for the boolean cube {—1, 1}", and for random
variables with weak dependence properties.

Here we study a class of probability measures in R" whose concentration prop-
erties were understood relatively recently, which are high-dimensional measures with
convexity properties, generalizing uniform distributions on convex sets. In particular,
we focus on log-concave probability measures.

We begin with the Prékopa-Leindler inequality, which is a functional version of
the Brunn-Minkowski inequality.

Theorem 3.1 (Prékopa-Leindler). Suppose that f,g,h: R" — [0, 00) are measurable
Sfunctions and 0 < A < 1 are such that for any x,y € R",

h((1=2)x+2y) > f(x)' g (3.1)

/ﬂZUJYWLQﬁ (32)

Then,
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whenever the integrals on the right-hand side converge.

Remarks.

(1) In the case where A, B C R" have finite volume, by setting
f=14, g=1s, h=1(1-2)4+1B
we recover the Brunn-Minkowski inequality in its multiplicative form. Indeed,

[, &, h satisfy the requirements of Theorem 3.1, and hence by its conclusion

Vol, (1 = )A + AB) = / h

1-a A
2( / f) ( / g) = Vol, (A)' Vol (B)*.

There are also several ways to deduce the Prekopa-Leindler inequality from the
Brunn-Minkowski inequality. For example, one may consider convex bodies
in higher dimensions whose marginal distributions yield the given functions,
and apply Brunn-Minkowski (see, e.g., [35]).

(2) The Prékopa-Leindler inequality may be viewed as a certain converse to Holder’s
inequality. Indeed, the Holder inequality implies that

fores (L) (L)

while the Prékopa-Leindler inequality yields

aex (L) (L)

Proof of Theorem 3.1 for n = 1. Consider first the case where f and g are bounded
functions. If f or g vanish almost everywhere, then there is nothing to prove. Hence
we may assume that || f||c and ||g||c are positive numbers. In fact, by homogeneity
we may assume that

/ l sup f()' g(2)!
Rn

x=(1-2)y+1z

”f”oo = ”g”oo =1, 3.3)

since otherwise we may replace f by f/||f|l~, replace g by g/|/gl|l and replace h
by h/ (|| =g ||f}o) , without affecting the validity of neither the assumptions nor the
conclusions of the theorem.

Recall that we abbreviate {h >t} = {x € R; h(x) > t}. Observe that condition
(3.1) imply that for all # > 0,

{h>t} 2 (0 -D{f >t} +A{g > t}. (3.4)
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If 0 < ¢ < 1 then both sets on the right-hand side of (3.4) are non-empty. Hence, by the
one-dimensional Brunn-Minkowski inequality (which is a triviality), for 0 < ¢ < 1,

m({h>1}) =2 (1-Dm{f>1})+am({g >1}),

where m is the Lebesgue measure on the real line. Therefore,

/Rh = /me({h > t})dt > /Olm({h > t})dt

1 1
> (1 —/l)/o m({f > t})dt + /1/0 m({g > t})dt

=(1—A)/Rf+ﬂ/RgZ (/Rf)l_ﬂ (/Rg)ﬂ'

This concludes the proof in the case where f and g are bounded. For the general
case, for M > 0 we replace f by min{f, M}, we replace g by min{g, M} and h by
min{g, M}. Such a truncation still satisfies the requirements of the Prékopa-Leindler
inequality (with the same function /). Hence, by the case of the inequality that was
already proven,

[ o] o] == ()"

where we used the monotone convergence theorem in the last passage. O

Proof of Theorem 3.1 for n > 2. By induction on n. We use x = (y,#) € R"! xR as
coordinates in R" and set

Fy) = / FOt)di = / £, (1) dr,
G(y)=/_ g(y,t)dt=[ gy (1) dt,

0

H(y)=/_ h(y,t)dtzf_ hy () dt.

[s] [e]

We claim that if y = (1 — A)y; + Ay,, for y;, yo» € R”, then,
H(y) = F(y)' G (y)". (3.5)
Indeed, if r = (1 — A)t; + At, for ¢y, ¢, € R, then

hy (1) = fy, (1) fi (12)
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Hence (3.5) follows by the one-dimensional Prékopa-Leindler inequality. Thanks to
(3.5) and the induction hypothesis, we may apply the (n — 1)-dimensional Prékopa-
Leindler inequality for the functions F', G and H and conclude (3.2). O

Definition 3.2. A function p : R" — [0, o) is log-concave if for all x,y € R" and
0<A<l,

p ((1=Dx+1y) = p(0) ™ p(y)*,
i.e., if the set Q = {p > 0} is convex and —log p is a convex function on Q.

We say that a probability measure (or a random vector) in R" is log-concave if it
is supported in an affine subspace of R™ with a log-concave density in this subspace.
Usually this affine subspace is R" itself.

For example, any Gaussian measure in R" is log-concave, because its density rel-
ative to the affine subspace where it is supported is of the form

caexp(=(A(x = D), (x - b)))

for a symmetric, positive-definite operator A, a number C4 > 0 and a vector b € R".
The quadratic function x — (A(x — b), (x — b)) is clearly convex, and hence the
Gaussian measure is log-concave. The uniform probability measure on any bounded
convex set, is log-concave as well. On the real line, it is very common to encounter
log-concave distributions; pretty much, a typical distribution that decays exponen-
tially or faster at infinity is often log-concave. Exponential decay at infinity is indeed
a necessary condition for log-concavity. Thus the exponential distribution on [0, co)
is log-concave, as well as beta and gamma distributions with certain parameters and
the double-exponential probability density

exp(=2|x]) (x eR).
Operations that preserve log-concavity include:

(1) Linear images. If X is a log-concave random vector in R", then for any sub-
space E C R" also

Proje(X)
is log-concave, by Prekopa-Leindler. It follows that for any linear (or affine)
map T : R® — R™, the random vector 7'(X) is log-concave.

(2) Pointwise product. If fi, ..., fy are log-concave functions, then so is the
product ]—[ﬁ | Ji- It follows that if a polynomial P has only real roots and is
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positive on an interval /, then its restriction to [ is log-concave. Indeed,
N
P@) =c-1;(x) - [ [(x=2)
i=1

for some interval I C R, a real number ¢ € Rand A;,...,4Ay € R\ I. Since
|x — 4;| is log-concave on I, the same applies for P.

(3) Convolution. If f, g : R™ — [0, c0) are log-concave, then f(y)g(x — y) is log-
concave on R” X R", and consequently the same applies for its marginal f * g.

(4) Weak limits. It is an exercise to deduce from the Prékopa-Leindler inequality
that if (un)n>1 is a sequence of log-concave concave probability measures
converging weakly to a probability measure u, then y is also log-concave. This
is not an obvious fact; think of the case where u tend to a measure supported
on a lower dimensional subspace.

Proposition 3.3 (“How to think on 1D log-concave random variables”). Let X € R be
an isotropic, log-concave random variable, i.e., EX = 0 and Var(X) = 1. Write p for
the log-concave density of X. Then for all x € R,

C,l{lxlsc.//} S p(x) S Ce_clxl,
where ¢, c’,c”,C > 0 are universal constants.

Sketch of proof. For the upper bound, if p(b) < p(a)/2 for some a < b, then p decays
exponentially and in fact p(x) < p(b)27*/?=%) for all x > b. As for the lower bound,
it is enough to show that p(x) > ¢’ for some x > ¢”” and for some x < —¢”. It is an
exercise to filling in the details. O

Corollary 3.4 (“reverse Holder inequalities”, Berwald [7,12]). For any isotropic, log-
concave, real-valued random variable X and for any p > —1,

c-min{p + 1,1} < [|IX]l, = E|IX|")/P < C(p +2), (3.6)
where ¢, C > 0 are universal constants.
The case p = 0in (3.6) is interpreted by continuity, i.e.,
1 Xlo = exp(Elog |X]).

This is not a norm, yet a nice feature is its multiplicativity: for any random variables
X and Y, possibly dependent,

XY lo = [IXTlol¥ o
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Proof of Corollary 3.4. Begin with the inequality on the right-hand side. By the mono-
tonicity of p + [|X]|,, it is enough to look at p > 0. In this case,

XI5 = [ rpra < ¢ [ e ian = Zorp e 1 < €y,
—oo —oo chP

where we used the fact that for integer p, we have I'(p + 1) = p! < pP. For the lower
bound, by monotonicity it suffices to look at p < 0. Setting ¢ = —p € (0, 1) we have

EL sc/ Le‘c"‘dts ¢
| X4 —o 712 l-g

and hence
1 —l/q l/ B
111, = (EW) > (C'(1=a)'7 > E(1 - ).

O

For instance, we learn from Corollary 3.4 that when X is a centered, log-concave
random vector in R”, then
2

E(X,0)* < C (]E(X, 9)2) 3.7)

for a universal constant C > 0 (in fact, C = 9 is optimal here, see Eitan [19]). Indeed,
if o = (E(X, 6)*)'/? then (X, )/ is an isotropic, log-concave random variable, and
(3.7) follows from Corollary 3.4.

Proposition 3.5 (“Reverse Holder inequalities for polynomials™). Let X be a real-
valued, log-concave random variable, and let f : R — R be a polynomial of degree
at most d. Then forany 0 < p < g,

1F(X)lg < Cqua - Ilf (Xlp,
for some constant C; 4 depending only on q and d.

Proof. Following Bobkov [9], we may assume that f is a monic polynomial in one
real variable, hence

d
Fx) =[x -2
i=1

for some 7y, ...,z4 € C. Consequently, by Holder’s inequality and by Corollary 3.4,
d d

[[x -z <] ]Ix-zillag

i=1 q i=1

d
< l_[ Cd(g+ DIX = zillo = (Cd(g + )N F(X)lo-
i=1

1F(X)lg =
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O

Remark 3.6. Proposition 3.5 remains valid verbatim if one replaces “real-valued
log-concave random variable” by “log-concave random vector in a finite-dimensional
normed space”; see Bourgain [13].

Theorem 3.7 (Hensley [31], Fradelizi [24]). Let K C R" be a centered convex body.
Assume that the random vector X that is distributed uniformly in K, is isotropic (or
more generally, that Cov(X) is a scalar matrix). Then for any hyperplanes Hy, H, CR"
passing through the origin,

Vol,.1(KNHy) <C-Vol,_1(K N Hy)
where C > 0 is a universal constant. In fact, C < ve.

Proof. Let @ € "' and denote

Vol,—1(K N (26 + 64))
Vol, (K)

po(t) =
Then py is the density of the random variable X - 6, which is log-concave and isotropic.
According to Proposition 3.3, for any x € R,

¢’ Ljx|<eny S opo(xo) < Ceclxl

In particular,
c<pe(0) <C,

for some universal constants ¢, C > 0. Thus, for 6,0, € S~ 1,

Vol,_1 (KNt
0 1( I)ZPQI(O)SESC,-
Vol,-1(KN6y) pe(0) ~ ¢

O

Thus, up a multiplicative universal constant, volumes of hyperplane sections of K
are closely related to the covariance matrix of the uniform distribution of K.

3.1 Bochner identities and curvature

We will now discuss a technique that originated in Riemannian Geometry and connects
the Poincaré inequality and Curvature/Convexity. The approach was developed in the
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works of Bochner in the 1940s and also Lichnerowicz in the 1950s, and it fits well with
convex bodies and log-concave measures in high dimension. In a nutshell, the idea is
to make local computations involving something like curvature, as well as integrations
by parts, and then dualize and obtain Poincaré-type inequalities. This may sound pretty
vague, let us explain what we mean.

Suppose that u is an absolutely-continuous, log-concave probability measure in
R”. The measure y is supported in some open, convex set K € R” (possibly K = R"),
and it has a positive, log-concave density

p=e

in K. We will measure distances using the Euclidean metric in R”, but we will measure
volumes using the measure u. We thus look at the weighted Riemannian manifold or
the metric-measure space

(Kv | : |nu)

We define the Dirichlet energy of a smooth function f : K — R as

I, = / 19/ 2du.
H!(u) K

Indeed, we measure the length of the gradient with respect to the Euclidean metric,
while we integrate with respect to the measure u. The Poincaré constant of u, denoted
by Cp (1), is the minimal number A > 0 such that for all u-integrable, locally-Lipschitz
functions f : K — R with [, fdu =0,

/KdeuSA-/KWdeu.

The Poincaré constant is finite and non-zero (see [8]), and it is a geometric charac-
teristic of the measure u that is closely related to the isoperimetric inequality. The
Poincaré constant of the standard Gaussian measure, for instance, equals one. The
inequality

Var,(£) < Co(u) [ 191 Pdn

where Var, (f) = / frdu - ( / fdu)?, is referred to as the Poincaré inequality.

The Laplace-type operator associated with our measure-metric space is defined,
initially for u € C2(K), via

Lu = Lyu=Au—-Vy - Vu = e’div(e”?Vu). (3.8)

Here, C°(K) is the space of smooth functions that are compactly-supported in K. The
reason for the definition (3.8) is that for any smooth functions u, v : R" — R, with one
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of them compactly-supported in K,

Rn(Lu)vd,u = /R" div(e ¥ Vu)v = —/n [Vu-Vole ¥ = - /n [Vu - Vo] du.

In particular

(—Lu,u)Lz(H)sz |Vu|2du.

Thus L is a symmetric operator in L?(u), defined initially for u € C(K). It can have
more than one self-adjoint extension, for example corresponding to the Dirichlet or
Neumann boundary conditions when K is bounded.’

It will be convenient to make an (inessential) regularity assumption on the measure
M, in order to avoid all boundary terms in all integrations by parts. We say that y is
a regular, log-concave measure in R” if its density, denoted by e, is smooth and
positive in R" and the following two requirements hold:

(i) Log-concavity amounts to ¢ being convex, so V2 > 0 everywhere in R”*. We
require a bit more, that there exists £ > 0 such that for all x € R",

e-1d < V2y(x) < é -Id. (3.9)

(i1) The function ¥, as well as each of its partial derivatives of any order, grows
at most polynomially at infinity.

According to an exercise below, any log-concave probability measure may be
approximated arbitrary well by a regular one.

From now on, we assume that our probability measure y is a regular, log-concave
measure. It turns out that in this case, the operator L, initially defined on C.°(R"),
is essentially self-adjoint, positive semi-definite operator in L?(u) with a discrete
spectrum. Its eigenfunctions 1 = ¢y, ¢1, . .. constitute an orthonormal basis, and the
eigenvalues of —L are

0=2p(L) <A1(L) = ; <A(L) <. ..
Cp(p)
with the eigenfunction corresponding to the trivial eigenvalue 0 being the constant
function. The eigenfunctions are smooth functions in R” that do not grow too fast at
infinity: each function
@, e V2

'"When discussing the Bochner technique, it is possible to find ways to circumvent spectral
theory of the operator L. Still, spectral theory helps us understand and form intuition, and we
will at least quote the relevant spectral theory.
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decays exponentially at infinity. Also (9%¢;)e™%/? decays exponentially at infinity
for any partial derivative @. This follows from known results on exponential decay of
eigenfunctions of Schrodinger operators. The eigenvalues are given by the following
infimum of Rayleigh quotients

V1
Ak(L) = inf M
FLposeees it fR" f2du

where the infimum runs over all (say) locally-Lipschitz functions f € L*(u). Since
o = 1, we indeed see that the first eigenfunction ¢; saturates the Poincaré inequality
for p. The linear space

{a+Lu;a€R, uECf(Rn)}

is dense in L*(u). For proofs of these spectral theoretic facts, see references in [38].

Let us return to Geometry. In Riemannian geometry, the Ricci curvature appears
when we commute the Laplacian and the gradient. Analogously, here we have the
easily-verified commutation relation

V(Lu) = L(Vu) — (VX)) (Vu),

where L(Vu) = (L(8'u),. .., L(0"u)). Hence the matrix V2 corresponds to a curvature
term, analogous to the Ricci curvature.

Proposition 3.8 (Integrated Bochner’s formula). For any u € C2(R"),
(Lu)’dyu = / (v%/,) Vi - Vudu + / 192l du,
R7 R R
where ||V2u||qu = 2", |Voul’.
Proof. Integration by parts gives
(Lu)zd,u = —/ V(Lu) - Vu du
R R"

= —/ L(Vu) -Vu du +/ [(Vzgl/)Vu . Vu] du
n RN

=Zn: |V8,-u|2d,u+/ (Vzw)w-w .
24 Jo ;



41

The assumption that u is compactly-supported was used in order to discard the
boundary terms when integrating by parts. In fact, it suffices to know that u is u-
tempered. We say that u is u-tempered if it is a smooth function, and (d%u)e~¥/?
decays exponentially at infinity for any partial derivative d“u. Any eigenfunction of L
is pu-tempered. If f is u-tempered, then sois L f. The following inequality is concerned
with distributions that are uniformly log-concave.

Theorem 3.9 (improved log-concave Lichnerowicz inequality). Lett > 0 and assume
that V> (x) > t for all x € R". Then,

Cr (1) < | ICV()llop - %

where ||A||op is the operator norm of the symmetric matrix A € R™*".

Equality in Theorem 3.9 is attained when y is a Gaussian measure, with any cov-
ariance matrix.

Proof of Theorem 3.9. Denote f = ¢, the first eigenfunction, normalized so that

N1z uy = 1-

Set A = 1/Cp(u). By the Bochner formula and the Poincaré inequality for 8 f (i =
1,...,n),

2= [ wpian= [ 1(P0vF Tl [ 19 d

/R VPt ' /R Y fdu 2

zz/ IV FPdu + A
Rn

2
=(t+/1)-/l—/1/ Vfdu (3.10)
Rn
Therefore the first eigenfunction has a “preferred direction”, i.e.,
2
/ Vfdu| >t (3.11)
Rn

Using that the i" coordinate of V£ is V f - Vx; and integrating by parts we have

/Rn Vfdu = —/Rn(Lf)xdy ZA/RH Frdp

Since f fdu = 0, by Cauchy-Schwarz, for some 6 € S"~!,

/R n Vfdﬂ‘ - /R (Vf.0)du = 2 /R Q. 6) p(d)
< Alfll 20y - VCV ()86 < AICVD) .
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This expression is at least ¢, and the theorem follows. O

Observe that by testing the Poincaré inequality with linear functions, we obtain

ICov(t)llop < Cp ().

We thus deduce from Theorem 3.9 that

~ | —

Cp(u) < -. (3.12)

Inequality (3.12) is sometimes referred to as the log-concave Lichnerowicz inequality.

The Bochner formula states that in the log-concave case, for any u € C°(R"),

[ wordu= [ 1P0eu-vaidur [ IVulsde [ 19l

Let us dualize this inequality in order to obtain a Poincaré-type inequality. To this end,
for f € L*>(u) we define the dual Sobolev norm

| £ 1l -1y = sup {/R Sudu; /R |VulPdu <lue Cg"(R")}.

This supremum can be finite only when f fdu=0.

Proposition 3.10. (H~'-inequality) Let i1 be a regular, log-concave probability meas-
ure in R™. Then for f € L*(u),

n
Vary(£) < IV A = D10 I3 -
i=1

Proof. We may assume that f fdu = 0. By approximation, assume that f = —Lu for
u € C2(R™). See [4] for the approximation argument. Then,

[ = [ 195 Tl < 19 s [ 190
<19 ln-sy [ (L2

The proposition follows. O
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The H~'-norm has a geometric interpretation as infinitesimal transport cost, which
may be roughly expressed by saying that when / fdu=0,ase — 0,

1
I i1y~ - Wap, (1 + e f)p). (3.13)

Let us explain (3.13). Let u;, u» be Borel probability measures on R”. We say that a
Borel probability measure y on R” X R”" is a coupling of w; and p; if

(7i)y = pi (i=1,2),

where 71 (x,y) = x and 7 (x, y) = y for (x,y) € R" x R". That is, the marginal of y
on the first coordinate is p1, and the marginal of y on the second coordinate is t;. The
L2-Wasserstein distance between U1, Mo is defined as

1/2
WZ(/'“’/'[Z) = inf (/ |X—y|2 d?’(%}’) s (314)
Y R XR”

where the infimum runs over all couplings y of u; and u;. In probabilistic notation,
we have
Wa(u1, = inf VE|X - Y|?
2((1, p2) (nf | |

where the infimum runs over all possibly-dependent random vectors X,Y € R" with
X having law u; and Y having law u;.

Proposition 3.11 (“bounding the H~'-norm by transport cost”). Let u be a finite,
compactly-supported measure on R"™. Let f : R™ — R be a bounded, measurable func-

tion with
/ fdu=0.

For a sufficiently small € > 0, let yuz be the measure whose density with respect to u
is the non-negative function 1 + € f. Then,

Wo(u, pe)

1/ i1y < lim inf -

Proof. We need to prove that for any u € C°(R"), function u : R* — R,

Wao(u,
Fudy < // [VulPdy - timinf % (3.15)
Rn RI’L E—

Fix such a test function u € C°(R™). Then the second derivatives of u are bounded on
R™. By Taylor’s theorem, there exists a constant R = R(u) with

u(y) —u(x) < |Vu(x)| - |x — y| + Rlx — y|2 Vx,y € R™. (3.16)



44

We may assume that sup | f| > O (otherwise, the theorem holds trivially), and let £ > 0
be smaller than 1/sup |f|. Then u. is a non-negative measure on R”. Let v be any
coupling of u and u .. We see that

1 1
[opudu= [t =2 [ ) -utayee.
Write

W) (u, pe) = \// lx = y[2dy(x,y).
R xR"™

According to (3.16) and to the Cauchy-Schwarz inequality,

1 R
/ hudy < L / Vu()] - | = yldy(x.y) + X / x = yldy(x.y)
n E R xR? E R xR"?

é\/‘/R;n |Vu(X)|2d,u(x) . Wzy(#,,ug) + gwg’(#’ﬂs)2.

IA

IA

By taking the infimum over all couplings y of u and u ., we obtain

W ¥l W s & 2
/ hudu < W// |Vu|2du - 2(4 pe) +R 204 pe) , (3.17)
n R7 E E

with R depending only on u. We may assume that liminf .o+ Wy (u, us)/e < oo;
otherwise, there is nothing to prove. Consequently,

(Wz(u,ug) 2 0
——==] =0

2
limint D2 ) ping e

-0t E e—0*

Hence by letting € tend to zero in (3.17), we deduce (3.15). The proof is complete. []
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Exercises.

(1) Begin with an arbitrary log-concave measure ¢ on R”, convolve it by a tiny
Gaussian, and then multiply its density by exp(—¢|x|?) for small & > 0. Show
that the resulting measure is regular, log-concave, with approximately the same
covariance matrix, and that the Poincaré constant cannot jump down by much
under this regularization process.

(2) Verify that the Poincaré constant of the standard Gaussian measure in R”"
equals one.

(3) Lett > 0, and let X be a t-uniformly log-concave random vector in R”, Use
the Prékopa-Leindler inequality, and show that for any subspace £ C R", also

ProjgX

is a t-uniformly log-concave random vector.

(4) The Bochner formula also states that for any u € C2°(R"),

(Lu)*du > / [(V2¢)Vu - Vuldpu.

Rn
Dualize this inequality in order to prove the Brascamp-Lieb inequality: For

any C'-smooth f € L*(u),

Var,(£) < [ ()7 9797 duto),

Can you find equality cases, other than a constant function f?
(5) The Maurey-Pisier proof of Gaussian concentration.

(a) Let X and Y be two independent, standard Gaussian random vectors in
R". For 8 € [0, /2] set

Xg = (sin@)X + (cosH)Y.

Prove that (Xg, 0Xg/00) coincides in distribution with (X, Y).

(b) Let F : R"™ — R be a locally-Lipschitz function and let ¢ : R — R be a
convex function. Prove that

/2
Eo(F(X) - F(Y)) = Eg (/0 <VF(X9), %> d@) .

(¢) Denote E = EF(X). Conclude that for any A > 0,

EeA(F(X)-E) < EeAm(VF(X).Y)/2 _ ]Ee/lznz\VF(X)\z/ég.
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(d) Conclude that if F is 1-Lipschitz, then for all ¢ > 0,
P(|F(X) - E|>1) <2e™ /7

(6) Let u, up, o, ... be log-concave probability measures on R". Assume that
un — p weakly, i.e., that for any continuous, compactly-supported function
¢:R" >R,

lim wduy = / wdu.
N —o0 R R?
Suppose that up is log-concave for all N. Prove that u is log-concave.
(7) Complete the proof of Proposition 3.3
(8) Let p : R" — [0, o0) be a log-concave probability density. Prove that there
exist A, B > 0 such that for all x € R”,

p(x) < Ae BI¥.
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Lecture 4

The thin-shell bound under convexity assumption

Yesterday we discussed the thin-shell theorem, asserting that under the isotropic nor-
malization, random vectors whose mass is concentrated in a thin spherical shell admit
approximately Gaussian marginals. In this lecture we discuss the main ideas in the
proof of the following thin shell bound:

Theorem 4.1. Let X be an isotropic, log-concave random vector in R". Then,
2 2 2
Var(|X|?) = E(|X| —n) < Cn, 4.1)

where C > 0 is a universal constant.

By (4.1), for any isotropic, log-concave random vector X in R”,
1 1
E(|X| - Vn)? < —E(|X]> - n)> = =Var(|X|*) < C. 4.2)
n n

Hence most of the mass of the random vector X is located in a thin-spherical shell of
radius v/ and width C.

Theorem 4.1 is tight, up to the value of the universal constant. Indeed, if X is a
standard Gaussian random vector in R” or if X is distributed uniformly in the cube
[-V3,V3]" C R", then X is isotropic and log-concave with

Var(|X]?) = Cn,

where C = 2 in the Gaussian case and C = 4/5 in the case of the cube.

Remark 4.2. Theorem 4.1 and the Bourgain-Milman inequality imply an affirmat-
ive answer to Bourgain’s slicing problem. Bourgain’s slicing problem has played a
highly influential role in the development of the theory of high-dimensional probab-
ility measures with convexity properties. An equivalent formulation, now established
as a theorem, is the following corrected form of the Busemann-Petty conjecture: Let
n>2andlet K,T C R" be centered convex bodies such that for any hyperplane H € R"
through the origin,

Vol,,_1 (K N H) < Vol,_1(T N H). (4.3)

Then
Vol, (K) < C - Vol (T) 4.4)

for a universal constant C > 0. For background on the slicing problem, see Ball [3] and
Klartag and Milman [37]. For the resolution of Bourgain’s problem in the affirmative,
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building on Guan’s breakthrough [27], see Klartag and Lehec [39]. For a deduction of
Bourgain’s slicing theorem from Theorem 4.1 and the Bourgain-Milman inequality,
see Eldan and Klartag [21].

We proceed with the main ideas of the proof of Theorem 4.1. Let u be a probability
measure on R” with a log-concave density. Recall the H~' (u)-norm, whose geometric
meaning is understood through the infinitesimal transport cost bound

Wolu, (1 +ef)p)
E

1/ 1l oy < liminf 4.5)

where W, is the L?>-Wasserstein distance. The bound(4.5) is valid under minimal reg-
ularity assumptions on f, provided that f fdu = 0. Recall the H™!-inequality

Vary (f) < 3" 10 Fll3y1 (4.6)
i=1

that holds for any smooth function f € L?(u). In particular, by substituting f(x) = |x|?
in (4.6) and noting that ' f = 2x;, Theorem 4.1 follows from the following:

Theorem 4.3. Let y be an isotropic, log-concave probability measure in R". Then,

n

2
Dl < O,
i=1

where C > 0 is a universal constant.

Write p for the log-concave density of the probability measure ¢ in R". For y € R”,
the corresponding exponential tilt of u is the probability measure u, with density

py(x) = ex'y_A(Y)p(x) (x € RY), 4.7
where
A =tog [ e dut)
Rn
is the logarithmic Laplace transform. Observe that forany x € R" andi = 1,...,n, as
c—0,

Pee;(x) = (1 +&x))p(x) + o(e).

It is an exercise to modify the proof of (4.5) and show that when u is compactly-
supported andi = 1,...,n,

WZ(”, ,usei)
—8 .

lIxill g7-1 () < limsup 4.8)
e—0*
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Thus, in order to prove Theorem 4.3, it suffices to construct efficient couplings of
exponential tilts of . The specific construction that we use for coupling tilts is related
to the theory of non-linear filtering and to Eldan’s stochastic localization from [20],
which we now describe.

For simplicity, let us assume that the log-concave probability measure y is compactly-
supported. For ¢ > 0 and y € R" we consider the 7-log-Laplace transform

Ar(y) = log /R &y 152 () i,

and the t-localized tilts or t-Gaussian needles, which are the probability densities:

pP(X)y1:(y/t —x)
P *y1:(y/1)

Pry(x) = @ RO () = : 4.9)

where
ys(x) = 2ns) ™" exp(~|x[*/(25))

is the density of a centered Gaussian in R" of covariance s - Id. The main advantage
of the p; , over the exponential tilt p, is that p; , is t-uniformly log-concave. In fact,
almost everywhere in R”,

V2(~logp,y) >t -1d. (4.10)

Denote by a;(y) the barycenter of the probability density p; ,, namely

@) =AW = [ piy e e R, (.11)
Rn

Itis an exercise to show that a, : R" — R is a Lipschitz map, with a Lipschitz constant
bounded uniformly in ¢ € [0, +c0). For reasons to be clarified soon, we are interested
in the following integral equation:

Lemmad4.4. Forany continuous pathw = (w;),>0 in R"™ with wg = 0 and for any initial
condition 0y € R", there exists a unique solution (0,);>¢ to the integral equation

t
0, = 0y + w, +/ as(05)ds,  t>0. (4.12)
0

The solution 8, = 6,(x) is continuous in (t,x) € [0, ) X R" and is smooth in x € R"
for any fixed t > 0. We denote
Gt,w(g()) =6;.

Thanks to the Lipschitz property of the map a; : R* — R”", Lemma 4.4 follows
from standard Ordinary Differential Equations (ODE) theory; see [40], also for the
standard fact that the map

Gy :R'" >R (4.13)
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is a diffeomorphism. Consider a standard Brownian motion in R”

(Wt)tz(),

with Wy = 0. We will use the continuous Brownian path W = (W;);>¢ in Lemma 4.4.
Abbreviate

G:(y) = Gz,W(y)-

Proposition 4.5. For any y € R", the stochastic process (G;(y)):>0 has the same law
as the process

(y +1tXy + Wi)i>0

where Xy is a random vector with law ., which is independent of the Brownian motion
(We)eo0

Proposition 4.5 is part of the theory of non-linear filtering.

Corollary 4.6. For any y € R", almost surely, the limit

lim G:(y)

Lim — (4.14)
exists, and has law p,.
Indeed, thanks to Proposition 4.5, Corollary 4.6 follows from the fact that

+tX, + W, W,
lim 22T x4 lim L = X,

t—00 t t—oo f

which is a random vector with law . Thus the limit in (4.14), usually denoted by
A (y), provides simultaneous coupling of all of the tilts (xy)yern.

Proof of Proposition 4.5. Our proof requires some familiarity with stochastic pro-
cesses.

Step 1. Observe that it suffices to prove the proposition for y = 0, since switching
from Xy to X, amounts to replacing the function

as(0)

by
as (6 +y).

We may thus assume that y = 0 and abbreviate X = Xj. For ¢ > 0 define

0, =tX + W,. 4.15)
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The random vector 0, /t = X + W, /t is a noisy observation of X, which typically gets
more and more accurate as ¢ increases. Since W;/t is a centered Gaussian random
vector of covariance Id/, the density of 6, /¢ equals

P*Y1e-

Our goal is to prove that (6,);>0 coincides in law with (G, g(0)),»0 for a standard
Brownian motion (B;));>o in R with By = 0.

Step 2. What is the conditional law of X given 8,7 It follows from (4.15) that the
joint density of (X, 6;/t) in R" x R" is

(x,2) = p(xX)y17:(z = x) (x,z) € R" xR". (4.16)

Hence the density of the conditional law of X given 6, /¢ is the normalized fiber of the
joint density in (4.16), namely the probability density
p(x)y1/:(6:/t - x)
P = v1/:(0: /1)

= Pt,6, (X),

where we used (4.9) in the last passage. Thus p; g, is the density of the conditional
law of X given the observation 6, (or given the observation 6, /t). In fact, p; g, is also
the density of the conditional law of X given all past observations (;)p<s<;. Indeed,
it is an exercise to show that the time reversal

Bt = th/t (t > 0)
is also a standard Brownian motion in R", with W; = By ,. Thus,

Law (X|(sX + W,)o<s</) = Law (X|(X + SW]/S)SZI/Z)
= Law (X|(X + By)s=1/:) = Law (X|X + By, and (Bs = B1j1)s>1/1)
= Law (X|X + By;;) = Law (X[t X + W,),

since Bs — By, is independent of X and X + By/,. Writing ¥; for the o-algebra gen-
erated by (6y)o<s<s, we conclude that

ELXIT] = [ pra (e = a0 @17)

Step 3. For t > 0 define B, € R" via the equation

t
0, = B, +/ as(6y)ds. (4.18)
0

Thus, forz > 0,
9t = Gt,B(O),
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where B = (B;);>0. It remains to prove that the innovation process (B;)>0 is a standard
Brownian motion in R”. From (4.18) we see that

t t
B, =W, +tX —/ as(05)ds =W, +/ (X - E[X|F5]) ds. (4.19)
0 0
By (4.18) the random vector B; is measurable with respect to ;. Consequently,

t
B, =W, +/ vsds (4.20)
0

where
E[v:|(Bs)o<s<t] =0,

and where for s < ¢ the increment W, — Wy is a centered, Gaussian random vector
of covariance (¢ — s)Id that is independent of (B, )o<r<s and of (v, )o<r<s. We see
from (4.20) that (B;);>0 is a martingale whose quadratic variation is that of a standard
Brownian motion. Hence it is a Brownian motion, by Lévy’s characterization. O

Thus far we have shown that for any x, y € R",

, (4.21)

f—oo t

G G,y
Wit =2 i 92 g O

because the first limit in (4.21) has law u, while the second has law u,. The next
proposition refines (4.21) by allowing to stop the processes at a finite time.

Lemma 4.7. Forx,y e R" andt > 0,

Wa(sins 1) < 7 BIG, () = Gy I

Proof. Fort >0andy € R" we denote by A;(y) the covariance matrix of the probability
density p; y, that s,

M) =TA0) = [ r8rp,(d - @) ®a) RPN 322)

Recall from (4.10) that p; ,, is uniformly log-concave. Thus by the log-concave Lich-
nerowicz inequality,

A(y) = VzAt()’) <--Id

~ | —
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This concavity property implies contraction properties of the time-dependent stochastic
gradient ascent from Lemma 4.4. That is, for y;, y, € R",

(ar(y1) —ar(y2), y1 = y2) = (VA (y1) = VA (y2), y1 — ¥2) (4.23)

1
1
=/ (VA (sy1 + (1= 8)y2)(y1 = y2), y1 = y2) ds < — —yl?
0

By Lemma 4.4,

G = o) == v+ [ 1a,(Gy() - as(GL ()] s
0
Hence by (4.23),
%th(x) - Gt()’)|2 =2(a;(G;(x)) — a; (G:(y)), G (x) — G (y))
<216, - GO
Equivalently,

41Gi(x) - GiP _

0.
dt 12

Hence

G:(x) = G/ (y)?
t2

Gs@) =GP _ |}, Gs@) =Gs()[
p = | Iim

> limsu 5
S §—00 S

§—00

’

where the limit exists almost surely. The conclusion now follows from (4.21). O

Recall that G, : R" — R is a smooth diffeomorphism. Denote
M, = G;(0) e R,

i.e., M;v = 8,G,(0) for any v € R". We write |M,|? for the sum of the squares of the
n? entries of the matrix M, .

Corollary 4.8. Forany centered, compactly-supported, log-concave probability meas-
ure pandt > 0,

n

1
DIl < 5 - EIMP.
i=1

Proof. 1t follows from Lemma 4.7 that

G:(0) - G (ge;)
&

W2 , ) 1 2
lim sup M < < limsupE .
£—0 & t e—0
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It is explained in [40] that the dominated convergence theorem allows us to replace
expectation and limit, and obtain that

W2(u, fee;) 1 G,(0) - G,(se;
£t sie) L gy GO = Grlecs)

£—0 &

!

= “BlG}(0)e; .

lim sup
&—0 &

Thus, by (4.8),

n n

1 1
2 il < 55 D EIGHO)ei = 5 - EIM .
i=1 i=1

O

In order to prove Theorem 4.3 we will substitute # = 1 in Corollary 4.8, and analyze
the growth of the matrix-valued process (M;)o<s<1. This analysis is quite technical,
and it is described in the Appendix below.

Remark 4.9. Why does it make sense to use the above stochastic processes in order
to bound the Wasserstein distance between exponential tilts of u? After all, it is well-
known that under mild regularity assumptions, the Wasserstein distance W, between
two probability measures y; and p;, as defined in (3.14), is realized by the Brenier
map. That is, if p; is the density of y; fori = 1,2, then there exists an essentially unique
map T that pushes forward p; to us such that

Wo(ui, u2) = \//Rn |Tx — x|2du; (x).

By “essentially unique” we mean that 7" is uniquely determined up to a set whose
p1-measure is zero. See e.g. Villani [55] and references therein for background on the
Brenier map. The Brenier map 7 is also the essentially unique map of the form 7' = V@
for a convex function @ : R — R that pushes forward p to ;. It satisfies the partial
differential equation of Monge-Ampere type:

P2(VO(x)) det V2D(x) = p; (x) (x € RM). (4.24)

Why don’t we use this optimal Brenier map in order to bound the Wasserstein distance
between exponential tilts of a log-concave measure u? The reason is that analytically,
the Brenier map is rather hard to analyze. In high dimensions, it is challenging to extract
useful quantitative information from a partial differential equation such as (4.24); see
[36] for an exception.

The coupling that we chose above, while non-optimal in the Wasserstein sense, is
easier to analyze and it respects both the isotropy assumption and the log-concavity.
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Second, it is optimal in a certain ways. In fact, let X and (W; )¢ be as in the proof of
Proposition 4.5. Consider all stochastic processes of the form

t
nm =W +/ usds, (4.25)
0

where the stochastic process (u;); >0 is assumed adapted to the filtration of the Brownian
motion (W;),>0. For any fixed T > 0, among all processes (1;);>0 of the form (4.25)
such that

Law(nr) = Law(TX + Wr),

the process (6;);>0 with 8, = W, + fot as(0s)ds minimizes the energy

T
E/ |us|*ds.
0

This is explained in Lehec [43]. Thus, the process (6;/1);~¢ is the minimal “perturba-
tion” of the rescaled Brownian motion that leads to the law of X + W, /¢, which tends
to X as t — oo. Moreover, the formulae involving this drift are particularly convenient
for analyzing exponential tilts of the given measure p. This provides some justification
for the strategy of coupling exponential tilts using this process.

Remark 4.10. A considerable strengthening of Theorem 4.1 is the Kannan-Lovasz-
Simonovits (KLS) conjecture [34]. In one of its formulations, the conjecture suggests
that for any isotropic, log-concave random vector X in R” and any locally-Lipschitz
function f : R” — R with Ef?(X) < o,

Varf(X) < CE|Vf(X)|*, (4.26)

where C > 0 is a universal constant. Theorem 4.1 establishes (4.26) in the particular
case where f(x) = |x|?, though the general case remains open. See [38] for information
about this conjecture, and for a proof of a variant of (4.26) where C is replaced by
Clogn.

Exercises.

(1) Modify the proof of (4.5) and prove (4.8).

(2) Let (W;);»0 be a standard Brownian motion with Wy = 0. Set B; = tW,; for
t > 0 and By = 0. Prove that (B,);>0 is again a standard Brownian motion in
R™.

(3) Let u be an absolutely-continuous, compactly-supported probability measure
with density p in R". Consider the vector a,(y) (¢ = 0,y € R") defined in
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(4.11) above. Prove that a, : R* — R”" is a Lipschitz map, with a Lipschitz
constant bounded uniformly in ¢ € [0, +00).

(4) Recall the proof of the Hadamard perturbation lemma and of the Hardy-Littlewood-
Polya inequality.
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Appendix

In order to prove Theorem 4.3, we should understand the matrix-valued process
(M;);>0 of the derivative at zero of the random diffeomorphism G, . Recall from (4.22)
that we denote

Ar(y) = V2N (y) = Cov(py,y)

and let us further abbreviate
A = At(Gt(O))-

The integral equation of Lemma 4.4 states that

Gi(y) =y + W, + /0 VAL (G, (3))ds.

By differentiating with respect y (see [40] for justification) we see that
t t
G,(0) =1d + / V2As(G4(0))G.(0)ds = Id + / AsMgds.
0 0

Consequently, we have the product integral equation

My=1d
J 4.27)
EMt = AIMI

The following lemma is a non-probabilistic bound for the solution of the product integ-
ral equation. Denote the eigenvalues of A;, repeated according to their multiplicity, by

(1) = A2(t) = ... = 2,(¢) > 0.

Lemma 4.11. Foranyt > 0,

M2gn (Z/t/li d). 428
M, | ;exp [ (s)ds (4.28)

It is straightforward to verify that for n = 1, equality holds in (4.28). Rather than
proving Lemma 4.11 along the lines of [40], we will prove the lemma by using the
Hardy-Littlewood-Polya inequality (see e.g. [50]). This inequality states that when
by > by >...> b, are real numbers and cy, ..., c, € R are such that

ibiﬁici (k=1,...,n), (4.29)
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then for any convex, increasing function ¢ : R — R,
n n
Dlelb) < elen. (4.30)
i=1 i=1

Denote the singular values of M, by
1) > s et 4.31)

2bi(1)

The numbers e ., e2bn(1) gre the eigenvalues of M M,. These are absolutely-

continuous functions of 7. The proof of Lemma 4.11 relies on the following:

Lemma 4.12. For k = 1,...,n and for almost any t > 0,

d k k
- Zbi(r) < Zai(z).
i=1 i=1

Proof. Fix t > 0 at which b(¢), ..., b,(¢) are differentiable, which happens almost
everywhere. By an approximation argument it suffices to prove the lemma under the
additional assumption that the inequalities in (4.3 1) are strict. Since A, is a symmetric
matrix, it follows from (4.27) that

d

From the singular value decomposition of the matrix M,, there exists orthonormal
bases uj,...,u, € R*and vy,...,v, € R" such that
M,uizebi(’)vi (i=1,...,n).

In particular M; M, u; = e2bi() y,. According to (4.32) and the Hadamard perturbation
lemma,

d
Ee”’f(f) =2M;A;Miu; - u; (i=1,...,n).

Thus J
Zezbi(t)abi(t) = 2(A; Myuj, Myu;) = 25D (A, 07).

In particular,
d & k k
= ;bi(t) = ;(szi,vi> < ;/li(t),

by the min-max characterization of the eigenvalues of the symmetric matrix A;. [
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Proof of Lemma 4.11. Since b;(0) = 0 for all i, we learn from Lemma 4.12 that for

k=1,...,n,
k k :
Zbi(t) < Z / i (s)ds. (4.33)
i=1 i=1 70

Denote b; = b;(t) and ¢; = fot A;i(s)ds. Then by > ... > b,, while condition (4.29)
holds true thanks to (4.33). Set ¢(f) = €%, a convex increasing function. According

to (4.30),
n n t
Z i) < Z exp (2/ /l,-(s)ds) )
i=1 i=1 0
Recalling that e2b1(1) | e2bi(1) gre the eigenvalues of M; M;, the lemma follows. J

To summarize, thus far we obtained the following:

Corollary4.13. Forany centered, compactly-supported, log-concave probability meas-
ure pandt > 0,

n n
1 t
Var () < 3 il < 55 ) Eexp (2 /0 Ms)ds),
i=1 i=1

where

>0 =) =...22,() >0

~ | =

are the eigenvalues of the covariance matrix A, of the probability density

Pt = Pt,G,(0)-

Let u be an isotropic, log-concave probability measure in R” with density p. It is
an exercise to show that for proving the thin-shell theorem we may approximate u and
assume that p is continuous and compactly-supported.

Recall that for # > 0 and y € R" we consider the probability density
Pry(x) = ¥ M p () (xeRY (434

where
Ar(y) = IOg/R ey'x_tlxlz/zp(x)dx

is a normalizing factor. The barycenter and covariance of p; , are given by

ar(3) = VA () = /R xpiy()ds € B
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and
Ar(y) = V2A,(y) = Cov(p,.y) € R™™.

We would also need the symmetric 3-tensor
VA0 = [ (@) s e RO
Rn,

Recall that p;  is t-uniformly log-concave, i.e., V2(-log p;. y) >t - Id for almost every
y € R™. One of our main proof ingredients is the following:

Lemmad4.14. Lett > 0and suppose that X is a centered, t-uniformly log-concave ran-
domvectorinR". Let Ay,. .., A4, =0 be the eigenvalues of Cov(X) and letuy,. .., ,u, €
R™ be a corresponding orthonormal basis of eigenvectors. Abbreviate X; = (X, u;).
Then for 1 <k <nands >0,

n
D BXiXX)  avazs) < 4712520, (4.35)
ij=1
where a V b = max{a, b}, i.e., in (4.35) we only sum over i, j with max{A;,1;} < s.

Proof. Write E C R”" for the subspace spanned by the vectors u; for which 4; < s. Let
Projg be the orthogonal projection operator onto £ in R". Denote

Y =ProjeX.

It follows from the Prékopa-Leindler inequality that Y is also #-uniformly log-concave,
and
l|Cov(Y) ||0p <s.

The improved log-concave Lichnerowicz inequality thus implies that the Poincaré con-
stant of Y, denoted by Cp(Y), satisfies

Cp(Y) < \/§ (4.36)

H=E[XY ®Y] € R,

Set

By the definition of the subspace E,
n
D EXi X Xi) 1 ava;2s) = Tr(H?) (4.37)
i,j=1
Moreover, by using (4.36) and the Poincaré inequalitry,
Var((HY,Y)) < Cp(Y) - E[2HY|? < 4t~ 1/25'2 . Tr(H*Cov(Y))
< 471232 Tl (4.38)
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On the other hand, since EX = 0, the Cauchy-Schwarz inequality shows that
Tr(H?) = EXg (HY,Y) < (EX])'/? - (Var(HY, Y))'/?
= 4, - \[Var(HY,Y). (4.39)

From (4.38) and (4.39),

VVar(HY, Yy < 471232002, (4.40)
The conclusion of the lemma follows from (4.37), (4.39) and (4.40). O

Let (W;);>0 be a standard Brownian motion in R" with Wy = 0. Consider the
stochastic process (6;);>¢ from the last lecture, for whose definition we offer two
alternatives:

(1) The first option is to introduce a random vector X in R" with law y, independ-

ent of the Brownian motion (W;);>0, and set

0[ :tX+Wt

(2) The second option is to uniquely define (6;);>¢ via the integral equation

t
9,=/ as(6)ds.
0

The two options coincide in law, as we have seen last week. Write F; for the o--algebra
generated by (65)o<s<;- When we say that 7 is a stopping time we mean that for any
t > 0, the event {7 < t} is measurable with respect to ¥;. Denote

Pt = Pt,6,» a; = a;(6;), A; = A (6,), Ay =N (6)

and write

1

7 2A() =2 0(@)=...22,() >0 4.41)
for the eigenvalues of the covariance matrix A;, repeated according to their multiplicity.
Since u is isotropic, at t = 0 we have Ag = Id and hence

21(0) = 12(0) = ... = ,(0) = 1.

For any k, the eigenvalue A (¢) equals 1 at time ¢ = 0, and it is smaller than 1 at any
time 7 > 1. In the interval (0, 1), however, the eigenvalue A (¢) is typically very large,
see the example in the exercise below. In view of Corollary 9.10 from last week, the
missing ingredient in the proof of the thin-shell theorem along the lines of [40] is the
following:
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Proposition 4.15. We have

n 1
ZEexp (2 / /lk(t)dt) < Cn,
k=1 0

where C > 0 is a universal constant.

The proof of Proposition 4.15 relies on the following proposition, which is a
straightforward variant of a recent breakthrough bound by Guan [27].

Proposition 4.16. For any t > 0 and any stopping time T,
1 n
- ZIP At AT)23) < Ce /1,
n
k=1

where a A b = min{a, b} and where C,a > 0 are universal constants.

It is conceivable that @ = 1 in Proposition 4.16, see [28]. Proposition 4.16 tells us
that while a single eigenvalue may explode at some time ¢ € (0, 1), it is unlikely that
many eigenvalues are simultaneously large.

Proof of Proposition 4.15 assuming Proposition 4.16. For k = 1, ..., n consider the
stopping time
T = inf {r > 0; A, (¢) > 3}.

For any fixedt > 0andi = 1,..., k, under the event 73 < t we have
Ai(tEATE) = At A1) > 3.
Hence, fori =1,...,k,
P(re <t) <PAi(t Ai) 2 3).

By adding these k inequalities and using Proposition 4.16, for any ¢ > 0,

1 & 1 &
P(re <1) < z;P(ﬂi(t/\Tk) >3) < E;P(/li(t/\rk) > 3)
< c% exp(=1/1%). (4.42)

Recall that @ > 0 is a universal constant. It follows from (4.42) that

2/«
Bri?<C(1+logz) . (4.43)
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Indeed, in view of (4.42) inequality (4.43) clearly holds if k > n/2. For k < n/2 we
obtain from (4.72) that for s > 2%/,

Tk_2 n 2 n n I_SQ/Z ~oaf2
P m 25| < C% eXp(—Sa/ . lOg %) =C (%) <Ce ™ .
0og %

By integrating over 2/ < s < co we obtain (4.43) . Consequently, since A (¢) < 1/1,

1 1
dr
/ Ax(t)dr < 3(te A 1) +/ n <3 -log(tx A 1). (4.44)
0 T

w1

Therefore, by (4.43) and (4.44),

n 1 n n
EZexp (2/ /lk(t)dt) <ef -EZE [772v1] < CZE[T,;Z +1]
k=1 0 k=1 k=1

n

1 n\2/ae .
SCn';;<l+logz) < én, (4.45)

where the last passage follows from the fact that the function (1 + log(1/x))%/® is
monotone and integrable in [0, 1], and the Riemann sum in (4.45) may be bounded by
the integral. O

The proof of Proposition 4.16 requires rather elaborate analysis of the time evol-
ution of the eigenvalues of the covariance matrix A,. Write

Eij(t) = (Ej1(1),&ijp(t) ..., Eijn (1)) €RT

where
Ein(D) = / (= anus) - (X — ity - x — ar, ug)pe (¥)dx € R,
RVL

with uy(¢),...,u,(t) € R" being any orthonormal basis of eigenvectors of A, corres-
ponding to the eigenvalues A;(¢) > ... > 4,,(¢). Let us fix a stopping time 7.

Lemma 4.17. For any smooth, increasing function f : [0, c0) — R and almost any
t>0,

d_~ 1<
EE;f(/li(f SOEEDIN: [|§U-(r)

i,j=1

sz’(/li(t)) - f'(4;(0))
Ai(1) = 4;(1)

Ar<ry |, (4.40)

where we interpret the quotient by continuity as f" (1;(t)) when A;(t) = A;(t). Moreover,
the function that is differentiated on the left-hand side of (4.46) is absolutely continu-
ousint € [0, 00).
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The expression in the right-hand side of (4.46) is reminiscent of the Daleckii-Krein
formula for the second derivative of matrix functions. For a function f : R — R and
a symmetric matrix A whose spectral decomposition is

n
A= Z/liui ® u;
i=1

for numbers Ay, ..., 4, € R and an orthonormal basis uy, ..., u, € R" we write
n
F(A) =" Fau; @ u;.
i=1

The Daleckii-Krein formula states that for any two symmetric matrices A, H € R"*",
ase — 0,

Trf(A+eH) =Trf(A)+&-Tr[f(A)H] + %2 -Tr[(B o H)H] + 0(&?)

where o is the Schur product or Hadamard product (i.e., entry-wise product), and
/! (/1 ) - f ’(/l /)
B= Z u;

i,j=1

Quj.

For v = (vy,...,v,) € R" we write (V2A;)v € R™*" for the symmetric matrix whose
i, j entry is

[(VBAI)U ZAt ijkVk

where A; = (Ar,ijk)i,j k=1,...n. Lemma 4.17 follows from the following identity:

.....

Lemma 4.18. For any smooth function f : [0, c0) — R and almost any t > 0,

2 (Au(0) = f (A1)
Equ (tAD) =3 ”Z] [|§,~j<r>| RO

-E Z’l%(t)f,(/li(t)) : 1{t<T}] .
i=1

Moreover, the function that is differentiated is absolutely-continuous in t € [0, +c0).

Proof. We will prove this lemma by using 1t6 calculus and the “first option” above for
the definition of (6,);>0, i.€.,
9[ =tX+ W[.

Recall from last week that for some Brownian motion (B;),;>o we have

d@t = dB[ + atdt (447)
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and that
Pt = DPt,6,

is the conditional law of X given (6y)o<s<;. Recall that F; is the o-algebra generated
by (6s)o<s<:. Hence, for any continuous test function ¢ : R* — R,

[ eri=Elotim. (4.48)

The stochastic process on the left-hand side of (4.48) is a martingale, since it represents
conditional expectations with respect to a non-decreasing family of o-algebras. In fact,
since p is compactly-supported and continuous, it follows that for any x € R",

(P(x))e0 (4.49)
is a martingale as well. Recalling that
x—t|x|?/2—
pe(x) = eOrx—tlxI7/2 A’(H‘)p(x)

we may apply the Itd formula based on (4.47) and obtain the evolution equation of the
martingale (4.49), namely

dp:(x) = (x — a;, dB;)p; (x). (4.50)
It follows from (4.50) that
da;, =d [/ xpt(x)dx] = / x{x —a;,dB;)p;(x)dx = A;dB;.
R7 R

Thus,
d(at ® Clt) = (AtdBt ®ay+a;® AtdB[) + Azzd[

and consequently,
dA, = d [/ (x ®x)pt(x)dx] —d[a; ® a;] = (VA,)dB; — A2dt.
Rn

Hence, for any stopping time 7,
dAine = Li<ry - [(VPAr)dB, — Aldt].

Consequently,
’ ’ 1
dTrf (Aiac) = lery - Tt [f (A (VPA)dB, — f'(A)Aldt + 3Didr|, (45D
where the It6 term equals

D[=

S e o L0 = £ @)
ij

4 TIOEOE.
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thanks to the Daleckii-Krein formula. By taking expectation the dB; term in (4.51)
vanishes, completing the proof. O

Since the measure y is compactly-supported, there exists R > 0 depending on u
such that
|€ij(H)] <R foralli,jandt > 0.

It is an instructive exercise to use Lemma 4.17 with f(x) = e#* in order to prove that
forall0 <t < cy,
P(A1(t AT) >2) < e Cult (4.52)

for some constants ¢, ¢, > 0 depending on the compactly-supported measure u.

Our next goal is to use Lemma 4.17 and prove a bootstrap estimate for a certain
class of functions considered by Guan [27], which generalizes the class of functions
f(t) =19 (q = 3) considered in Chen [16].

Lemma 4.19. Let D > 1,r € [2,3],t > 0 and let T be a stopping time. Suppose that
f :[0,00) = [0, o) is a smooth, increasing function such that

{f(x):xz, Vx>r

4.53
F7(x) < D2f(x), Vx 20 (4.53)

Then, for almost any t > 0,
iEif(/l,-(t/\?’)) SC(1+D—2) -Eif(/li(t/\T)). 4.54)
dt i=1 tooVr i=1

where C > 0 is a universal constant.

Proof. Abbreviate A; = A;(t) and &;; = &;(¢). Since f is positive, by Lemma 4.17 it
suffices to prove that

) - £ 2\ &
Z |§U|2% < (_ ?f) Zf(/l) (4.55)
i,j=1

Since the probability density p; is f-uniformly log-concave, Lemma 4.14 shows that
forany s >0and k =1,...,n,

n

D vy zsy <4750 (4.56)
i,j=1

The bound (4.55) follows from several applications of (4.56) as well as from the bound

A <1/t
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which was discussed in (4.41).

Step 1. Since &;ji is symmetric in i, j and k, by using (4.56) with s = A; we see
that

n
D azry = D E (zry < 32 I, >r}Z§,,k1u sty (457)

i,j=1 i,j,k

12
= @Z/l?/zl{ﬂm} < 72/1?1{Ai2r} < TZf(/li)'
i i i=1

Step 2. Consider the contribution to the left-hand side of (4.55) of all 7, j with
min{A;,4;} > r. (4.58)
Since f’(x) = 2x when x > r, this contribution equals

F () = f(4;)
#lfijlzl{min(/li,/lj)zﬂ = 22 €717 min(ai,2,)2 1)
Q=1 i

< 2; &ij P a2y < ?
where we used (4.57) in the last passage.
Step 3. Consider the contribution to the left-hand side of (4.55) of all i, j with
i <r,d;2r+1 or Aj<r,dizr+1. (4.59)

This contribution equals

2Zf(ﬂ)_ f(/l)

i,j=1

&P ety Ly <)

16-12

aa
< ,Z;‘ p —l/lj €01 1= ra1y Ly <ry < 162 121 oy <

Here we used that f” > 0 as well as the fact that 4;/(1; —=4;) <r+1<4whend; <r
and A; > r + 1, and in the last passage we used (4.57).

Step 4. Let us show that

Z €612 F (A avayzray < — Z FQW). (4.60)

i,j=1
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Write a V b V ¢ = max{a, b, c}. By applying (4.56) with s = r + 1, and recalling that
r <3,

n

Z f(/li)fl'zjkl{/liv/ljv/lksr+l} 4.61)
ijk=1
472 2

< —me (r+ 120 1,20 <72m>

Next, we use that if A; <r + 1 then f(1;) < f(r +1) = (r + 1)2 < 16 whileif 3; > r + 1
then f(4;) = /lf. We again apply (4.56) with s = r + 1 to obtain

n

C
D P vty eraisa < 7 DAl sy (4.62)
k

i,j k=1
c’ ) C' <
< \—/; ;/lkl{/lerH} < @ kZ:;f(/lk)-
By adding (4.61) and (4.62) we obtain (4.60).
Step 5. Consider the contribution to the left-hand side of (4.55) of all i, j with
max{d;,4;} <r+1. (4.63)

By using (4.53) and the fact that f is non-negative and increasing, we see that this
contribution is at most

f'(/l) f (1)
2 Z P < <1y < 4D2Zf(ﬂi)|§ij|21{a_,-s/ligr+1}

i,j=1 i,j

D &
<C— k),
W;ﬂ ©)

where we used (4.60) in the last passage.

The results of Step 2, Step 3 and Step 5 imply the desired bound (4.55). O

It is a calculus exercise to prove that for any r € [2,3] and D > 1 there exists a
smooth, increasing function f : [0, c0) — (0, o) with

D(x-r) _ 1
f(x) = {; ¥EITD (4.64)

xX2>r
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and £ (x) < D?f(x) for all x > 0. We denote this function f by f, p, and observe that
it satisfies condition (4.53) of From Lemma 4.19. From the conclusion of the lemma
we conclude that for any D > 1,2 <r < 3 and a stopping time 7, if

0<tr<D™* (4.65)

then D?/+/t < 1/t and hence for f = f, p

~1Q

d n n
EE;JC(M; AT) <= E ) F(tAT)). (4.66)

The function f = f, p is slightly complicated, and we prefer to reformulate the growth
condition (4.66) in terms of the much simpler function

gr(x) :x2 : 1{er}-

From (4.64),
8r < fr,D- (467)

In the other direction, we claim that for any D > 1 and x > 0, if

1
2<r+—<¥<3
D

then 9
frp(x) < 18 (x) + exp(=D (7 —r)). (4.68)

Indeed, if x < r then by (4.64), since r <7 —1/D,
Jr(x) < f(r) = exp(=D(F - r)),

and (4.68) holds true in this case. If x > 7 then both f:(x) and g, (x) equal x?, and
(4.68) trivially holds. In the remaining case r < x < 7 we have

2
9 9
) X _4x 4gr(x),

NI

fr(0) < fr(F) = P < (

completing the proof of (4.68).

Proof of Proposition 4.16. We may assume that t < 278 as otherwise there is nothing
to prove. We will set #g = ¢ and partition the interval [0, 7] into intervals

[t1.t0], (2.1 ) oo [tsts 2R -

For k > 0 we define

k-1
Tr :2_8k[, D :[;1/4, I"k=3—2li1/8 S [2,3]
i=0
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Since t; < D;“ we may use the differential inequality (4.66) for all s € [fx+1,x]. By
integrating this differential inequality over this interval, we obtain

n C n
t
E;fkuiak AT)) < (tk—"]) E;fkuim AT)), (4.69)
where fi = f;, p,. Setalso gx = g,, and define
Fe=BE) fili(te A7) and  Gr=B ) ge(ilti AT)).
i=1 i=1

Note that rg; + 1/Dy < rgs1 + 1/VDy = ri. From (4.69), as well as the two inequal-
ities (4.67) and (4.68), we obtain for k > 0,

C n

175

Gr < Fi < ( ) E § JrDe (Ai(tge1 A T))
Tk+1 =1

C n
I 9 =Dy (re—ri+1)
<[] B | 28kt (itaar A1) + e PrxT
< (tk+1) 2 [4gk+1( (ka1 AT)) + e

9 _ —
= 28C (ZGk+1 + neXP(—l‘kl/S)) < C G +nexp(=25718)] . (4.70)

From this recursive inequality we obtain that for £ > 0,

k=1
Go<C*Gr+n- Z ci*! exp(—2’.t71/8) <C*Gy+Cn- e’t_l/g, 4.71)
i=0

since the sum in (4.71) is at most

k-1 0
Z i+l exp(_zit—l/S) < Z i+l exp(—2i _ t—1/8) -C. e"_l/g,
i=0 i=0

We next show that C¥Gy — 0 as k — oo. To this end we use (4.52). Since uis
compactly-supported, for some C,, > 0 depending on u and for a sufficiently large &,

G <Cu P(Ay(t AT) 2 2) < Ce /i = Ce w1,
Hence indeed CXG; — 0 as k — oo, and from (4.71),

1/8

n
Z]P(/l,-(t AT)>3)<Go<Cn-e "
i=0
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We end this lecture with an interpretation of our results in the context of the
Prékopa-Leindler inequality. Recall that we write

ys(x) = 2rs) "2 exp(~|x[*/(25))

for the density of a centered Gaussian random vector of covariance s - Id in R". Let p
be an isotropic, log-concave density in R" and for ¢ > 0 set

qt =P *Y1/t-

By the Prékopa-Leindler inequality, the probability density ¢, is log-concave, since it is
a convolution of two log-concave probability measures. A straightforward computation
based on (4.34) shows that

V(= log g,) (x) = 2 (%d _ Cov(pz,m) _ (17" _ At<rx>) .

Thus the log-concavity of ¢, amounts to the inequality A; < Id/¢, which was one of
the starting points of our analysis today. By using the “Option 1” definition of 6,, we
see that fort > 0,

J.

where | - | is the Hilbert-Schmidt norm, and where the last inequality in (4.72) follows
from Proposition 4.16. Thus, on a quantitative level, inequality (4.72) is a refinement
of the Prékopa-Leindler inequality which amounts to the pointwise bound

4 V3(-logg) ()]

. = g:(x)dx = E|A,|* < Cn (4.72)

0<V*(-logg,) <t-1d.

Exercises.

(1) Why can we assume that u is compactly-supported when proving the thin-shell
theorem?

(2) provethatforany D > 1 andr € [2,3] there exists a smooth, increasing function
f :]0,00) — [0, o) satisfying (4.53).

(3) Consider the isotropic, log-concave probability density
p(x1,...,x,) = 2o~ Lini 21l

(a) Prove that in this case, for any r > 0 the matrix A, is diagonal and its
diagonal entries are independent and identically-distributed. Write Z; for
the (1, 1)-entry of A,, and explain that its law does not depend on n.



(b) Prove that the support of the random variable Z; is not uniformly bounded
forallt € (0,1).

(c) Prove that if x > 0 is such that P(Z; > x) > 1/n, then E|[A;||op > x/2.
(d) Conclude that sup,_; .1 El|A;|lop > @y, for some sequence @, — oo.

(4) Assume that y is isotropic, compactly-supported probability measure in R".

(a) Use Lemma 4.17 and show that there exists R = R, > 0 such that for a
convex, smooth, increasing function f : [0, 0) — R, and almost all ¢ > 0,

d n n .,
TED @) <R Y UBf (A1),
i=1 i,j=1
(b) For 8> 0and ¢t > 0 define
1 n
Fg;=—1logE Y Ut
b= g Z‘

1

Prove that

1
Fgi <tRB+—22 41,

(¢) Write p = P(4(¢) = 2). Prove that for 8 > 2logn,
logp < z‘R,B2 - g
Set 8 = 1/(4tR) and conclude that for a sufficiently small z > 0,
P (1) > 2) < expl(—c,/1)

for some ¢,, > 0 depending on p.



References

(1]

(2]
(31

(4]

(5]

(6]

(71

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

Bakry, D., Gentil, L., Ledoux, M., Analysis and Geometry of Markov Diffusion Operators.
Springer, Berlin, 2014.

Ball, K., Cube slicing in R". Proc. Amer. Math. Soc., Vol. 97, no. 3, (1986), 465-473.

Ball, K., The legacy of Jean Bourgain in geometric functional analysis. Bull. Amer. Math.
Soc., Vol. 58, no. 2, (2021), 205-223.

Barthe, F., Klartag, B., Spectral gaps, symmetries and log-concave perturbations. Bull.
Hellenic Math. Soc., Vol. 64, (2020), 1-31.

Benyamini, Y., Two-point symmetrization, the isoperimetric inequality on the sphere and
some applications. Texas functional analysis seminar (1983—1984), Longhorn Notes, Uni-
versity of Texas Press, (1984), 53-76.

Berndtsson, B., Complex integrals and Kuperberg’s proof of the Bourgain-Milman the-
orem. Adv. Math., Vol. 388, Paper No. 107927, (2021), 10 pp.

Berwald, L., Verallgemeinerung eines Mittelwertsatzes von J. Favard fiir positive konkave
Funktionen. Acta Math., Vol. 79, (1947), 17-37.

Bobkov, S. G., Isoperimetric and analytic inequalities for log-concave probability meas-
ures. Ann. Probab., Vol. 27, no. 4, (1999), 1903-1921.

Bobkov, S. G., Remarks on the growth of LP -norms of polynomials. Geometric aspects of
functional analysis, Israel seminar, Lecture Notes in Math., Vol. 1745, Springer, (2000),
27-35.

Bobkov, S. G., Chistyakov, G., Gotze, F., Normal approximation for weighted sums under
a second-order correlation condition. Ann. Probab., Vol. 48, no. 3, (2020), 1202-1219.

Bobkov, S. G., Chistyakov, G., Gotze, F., Concentration and Gaussian approximation for
randomized sums. Probability Theory and Stochastic Modelling, Vol. 104, Springer, 2023.

Borell, C., Complements of Lyapunov’s inequality. Math. Ann., Vol. 205, (1973), 323-331.

Bourgain, J., On the distribution of polynomials on high-dimensional convex sets. Geo-
metric aspects of functional analysis, Israel seminar, Lecture Notes in Math., Vol. 1469,
Springer, (1991), 127-137.

Bourgain, J., Milman, V. D., New volume ratio properties for convex symmetric bodies in
R". Invent. Math., Vol. 88, no. 2, (1987), 319-340.

Carleson, L., Selected problems on exceptional sets. D. Van Nostrand Co., 1967.

Chen, Y., An almost constant lower bound of the isoperimetric coefficient in the KLS con-
Jjecture. Geom. Funct. Anal. (GAFA), Vol. 31, no. 1, (2021), 34-61.

Diaconis, P., Freedman, D., Asymptotics of graphical projection pursuit. Ann. Statist., Vol.
12, no. 3, (1984), 793-815.

Diaconis, P., Freedman, D., A dozen de Finetti-style results in search of a theory. Ann. Inst.
H. Poincaré Probab. Statist., Vol. 23, no. 2, (1987), 397-423.



74

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]
(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

Eitan, Y., The centered convex body whose marginals have the heaviest tails. Studia Math.,
Vol. 274, no. 3, (2024), 201-215.

Eldan, R., Thin shell implies spectral gap via a stochastic localization scheme. Geom.
Funct. Anal. (GAFA), Vol. 23, (2013), 532-569.

Eldan, R., Klartag, B., Approximately Gaussian marginals and the hyperplane conjecture.
In Concentration, functional inequalities and isoperimetry, Vol. 545 of Contemp. Math.,
Amer. Math. Soc., (2011), 55-68.

Feller, W., An introduction to probability theory and its applications. Vol. I1. Second edi-
tion. John Wiley & Sons, 1971.

Figiel, T., Lindenstrauss, J., Milman, V. D., The dimension of almost spherical sections of
convex bodies. Acta Math., Vol. 139, no. 1-2, (1977), 53-94.

Fradelizi, M., Hyperplane sections of convex bodies in isotropic position. Beitrage Algebra
Geom., Vol. 40, no. 1, (1999), 163-183.

Gromov, M., Paul Lévy’s isoperimetric inequality. Appendix C in Gromov’s book Metric
structures for Riemannian and non-Riemannian spaces, Birkhduser, 1999.

Gromov, M., Milman, V. D., Generalization of the spherical isoperimetric inequality to
uniformly convex Banach spaces. Compositio Math., Vol. 62, no. 3, (1987), 263-282.

Guan, Q., A note on Bourgain’s slicing problem. Preprint, arXiv:2412.09075

Guan, Q., On tail probability of the covariance matrix in Eldan’s stochastic localization.
arXiv:2508.14943

Hadwiger, H., Ohmann, D., Brunn-Minkowskischer Satz und Isoperimetrie. Math. Z., Vol.
66, (1956), 1-8.

Hensley, D., Slicing the cube in R and Probability (bounds for the measure of a central
cube slice in R by probability methods). Proc. Amer. Math. Soc., Vol. 73, no. 1, (1979),
95-100.

Hensley, D., Slicing convex bodies—bounds for slice area in terms of the body’s covariance.
Proc. Amer. Math. Soc., Vol. 79, no. 4, (1980), 619-625.

Henstock, R., Macbeath, A. M., On the measure of sum-sets. 1. The theorems of Brunn,
Minkowski, and Lusternik. Proc. London Math. Soc. (3), Vol. 3 (1953), 182-194.

Iriyeh, H., Shibata, M., Symmetric Mahler’s conjecture for the volume product in the 3-
dimensional case. Duke Math. J., Vol. 169, no. 6, (2020), 1077-1134.

Kannan, R., Lovdsz, L., Simonovits, M., Isoperimetric problems for convex bodies and a
localization lemma. Discrete Comput. Geom., Vol. 13, no. 3-4, (1995), 541-559.

Klartag, B., Marginals of geometric inequalities. Geometric aspects of functional analysis,
Israel seminar, Lecture Notes in Math., Vol. 1910, Springer, (2007), 133-166.

Klartag, B., Logarithmically-concave moment measures I. Geometric aspects of functional
analysis, Israel seminar, Lecture Notes in Math., Vol. 2116, (2014), 231-260.

Klartag, B., Milman, V., The slicing problem by Bourgain. Analysis at Large, Dedicated to
the Life and Work of Jean Bourgain, edited by A. Avila, M. Rassias and Y. Sinai, Springer,
(2022), 203-232.



[38]

(39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]
[56]

75

Klartag, B., Logarithmic bounds for isoperimetry and slices of convex sets. Ars Inveniendi
Analytica, Paper No. 4, (2023), 17pp.

Klartag, B., Lehec, J., Affirmative resolution of Bourgain’s slicing problem using Guan’s
bound. Geom. Funct. Anal. (GAFA), Vol. 35, (2025), 1147-1168.

Klartag, B., Lehec, J., Thin-shell bounds via parallel coupling. Preprint, arXiv:2507.15495

Koldobsky, A., Fourier analysis in convex geometry. American Mathematical Society,
2005.

Kuperberg, G., From the Mahler Conjecture to Gauss Linking Integrals. Geom. Funct.
Anal. (GAFA), Vol. 18, (2008), 870-892.

Lehec, J., Representation formula for the entropy and functional inequalities. Ann. Inst.
Henri Poincaré Probab. Stat., Vol. 49, no. 3, (2013), 885-899.

Mabhler, K., Ein Minimalproblem fur konvexe Polygone. Mathematica Zutphen B7, (1939),
118-127.

Mahler, K., Ein Ubertragungsprinzip fiir konvexe korper. Casopis Pest Mat. Fys., Vol. 68,
(1939), 93-102.

McMullen, P., Volumes of projections of unit cubes. Bull. London Math. Soc., Vol. 16, no.
3, (1984), 278-280.

Meyer, M., Pajor, A., On the Blaschke-Santalo inequality. Arch. Math., Vol. 55, (1990),
82-93.

Miiller, C., Spherical Harmonics. Lecture Notes in Math., Vol. 17, Springer, 1966.

Nazarov, F., Podkorytov, A. N., Ball, Haagerup, and distribution functions. In Complex
analysis, operators, and related topics, Oper. Theory Adv. Appl., Vol. 113, Birkhiuser,
(2000), 247-267.

Polya, G., Remark on Weyl’s note “Inequalities between the two kinds of eigenvalues of a
linear transformation.” Proc. Nat. Acad. Sci. U. S. A., Vol. 36, (1950), 49-51.

Santald, L. A., Un invariante afin para los cuerpos convexos del espacio den dimensiones.
Portugal. Math., Vol. 8, (1949), 155-161.

Schmidt, E., Der Brunn-Minkowskische Satz und sein Spiegeltheorem sowie die isoperi-
metrische Eigenschaft der Kugel in der euklidischen und hyperbolischen Geometrie. Math.
Ann., Vol. 120, (1947), 307-422.

Sudakov, V. N., Typical distributions of linear functionals in finite-dimensional spaces of
high-dimension. (Russian) Dokl. Akad. Nauk. SSSR, Vol. 243, no. 6, (1978), 1402-1405.
English translation in Soviet Math. Dokl., Vol. 19, (1978), 1578-1582.

Vaaler, J. D., A geometric inequality with applications to linear forms. Pacific J. Math.,
Vol. 83, no. 2, (1979), 543-553.

Villani, C., Topics in optimal transportation. American Mathematical Society, 2003.

Vershynin, R., High-dimensional probability. Cambridge University Press, 2018.



	1 The cube and the sphere in high dimensions
	2 Spherical concentration and the thin shell theorem
	3 Log-concavity and the Bochner method
	4 The thin-shell bound under convexity assumption
	References

