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Lecture 1

The cube and the sphere in high dimensions

In these lectures we study geometry in an 𝑛-dimensional Euclidean space when the
dimension 𝑛 is very large, tending to infinity. We will encounter high-dimensional
phenomena that do not arise in dimension 3 or 7, say, such as concentration of measure
or the emergence of approximately symmetric substructures.

The simplest examples of geometric shapes in R𝑛 are perhaps the unit cube

𝑄𝑛 =

[
−1

2
,

1
2

]𝑛
,

and the Euclidean unit sphere

𝑆𝑛−1 = {𝑥 ∈ R𝑛 ; |𝑥 | = 1} ,

where |𝑥 | =
√︁
⟨𝑥, 𝑥⟩ is the Euclidean norm of the vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, and we

denote the scalar product of 𝑥, 𝑦 ∈ R𝑛 by ⟨𝑥, 𝑦⟩ = 𝑥 · 𝑦 = ∑
𝑖 𝑥𝑖𝑦𝑖 . Additional examples

of geometric shapes in R𝑛 include the Euclidean unit ball

𝐵𝑛 = {𝑥 ∈ R𝑛 ; |𝑥 | ≤ 1} ,

whose features are rather similar to those of the unit sphere, the cross-polytope which
is the convex hull of the 2𝑛 vectors

±𝑒1, . . . ,±𝑒𝑛 ∈ R𝑛,

and simplices, where an 𝑛-dimensional simplex inR𝑛 is the convex hull of 𝑛+ 1 vectors
that affinely span R𝑛. Here, 𝑒𝑖 ∈ R𝑛 is the standard 𝑖th unit vector. Note that a regular
(𝑛 − 1)-dimensional simplex is conveniently represented in R𝑛 as the convex hull of
𝑒1, . . . , 𝑒𝑛 ∈ R𝑛.

1.1 The unit cube

Consider the unit cube 𝑄𝑛 = [−1/2, 1/2]𝑛 ⊆ R𝑛. There are two relevant lengthscales
for this cube: its sidelength, which is 1, and its diameter, which is

√
𝑛 =

����(1
2
, . . . ,

1
2

)
−

(
−1

2
, . . . ,−1

2

)���� .
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Here, the diameter of 𝐾 ⊆ R𝑛 is

diam(𝐾) = sup
𝑥,𝑦∈𝐾

|𝑥 − 𝑦 |.

The
√
𝑛 lengthscale is slightly more prevalent in the analysis of the high-dimensional

cube; if we are forced to compare the unit cube to a Euclidean ball of a certain radius,
then we should choose a ball of radius on the order of

√
𝑛 (or in some cases

√︁
𝑛/log 𝑛).

For example, what is the typical distance between two random points in the unit cube?
That is, let

𝑋 = (𝑋1, . . . , 𝑋𝑛) ∼ Unif(𝑄𝑛)

and
𝑌 = (𝑌1, . . . , 𝑌𝑛) ∼ Unif(𝑄𝑛)

be two independent random vectors, each distributed uniformly in the unit cube 𝑄𝑛.
We are interested in typical values of the random variable |𝑋 −𝑌 |. Its 𝐿2-norm is easy
to compute. Indeed, since 𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑛 are independent random variables,
all distributed uniformly in the interval [−1/2, 1/2], we have

√︁
E|𝑋 − 𝑌 |2 =

√√
E

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑌𝑖)2 =
√︁
𝑛 · 2Var(𝑋1) =

√︁
𝑛/6.

The random variable |𝑋 − 𝑌 | is actually concentrated around the value
√︁
𝑛/6, and in

fact, for any 𝑡 > 0, the probability that it deviates from this value by more than 𝑡 may
be bounded as follows:

P
(���� |𝑋 − 𝑌 | −

√︂
𝑛

6

���� ≥ 𝑡) ≤ 𝐶 exp(−𝑐𝑡2), (1.1)

for some universal constants 𝑐, 𝐶 > 0. Inequality (1.1) shows that most of the mass of
the random vector 𝑋 −𝑌 is contained in a thin spherical shell of radius

√︁
𝑛/6 and width

𝑂 (1). Here 𝐵 = 𝑂 (𝐴) means that |𝐵| ≤ 𝐶𝐴, where 𝐶 > 0 is some universal constant.
Two sources for such concentration inequalities to be discussed in these lectures are
independence and convexity. Let us describe a proof of (1.1) which relies on statistical
independence: Observe that for any 𝑢 ∈ R and 𝑡 > 0,���� 𝑢 − √︂

𝑛

6

���� ≥ 𝑡 =⇒
���𝑢2 − 𝑛

6

��� ≥ 𝑡√︂𝑛

6

and hence (1.1) would follow once we prove that

P

(����� |𝑋 − 𝑌 |2 − 𝑛
6√

𝑛

����� ≥ 𝑡
)
≤ 𝐶 exp(−𝑐𝑡2), (1.2)
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for some universal constants 𝑐, 𝐶 > 0. Since the random variable

|𝑋 − 𝑌 |2 =

𝑛∑︁
𝑖=1

(𝑋𝑖 − 𝑌𝑖)2

is a sum of independent, identically-distributed (i.i.d), bounded random variables,
the random variable |𝑋 − 𝑌 |2 is approximately a Gaussian random variable of mean
𝑛/6 and standard deviation 𝐶

√
𝑛. The deviation inequality (1.2) fits with this Gaus-

sian approximation; more precisely, it states that the random variable |𝑋 − 𝑌 |2 has a
uniformly sub-gaussian tail, relative to its mean and variance. This follows from the
Bernstein (or Hoeffding) concentration inequality for sums of bounded, independent
random variables, which is the subject of a guided exercise below.

Our next question about the cube concerns the volumes of its hyperplane sections.
For any 𝜃 ∈ 𝑆𝑛−1, writing 𝜃⊥ = {𝑥 ∈ R𝑛 ; ⟨𝑥, 𝜃⟩ = 0} for its orthogonal complement,
we have

1 ≤ Vol𝑛−1
(
𝜃⊥ ∩𝑄𝑛

)
≤
√

2 (1.3)

where the inequality on the left-hand side is due to Hensley [30] and equality is attained
when 𝜃 = 𝑒𝑖; there is a stronger version due to Vaaler [54] that follows from the Prékopa-
Leindler inequality which will be discussed below. The inequality on the right-hand
side of (1.3) is due to Ball [2] (see also the simpler proof in Nazarov and Podkorytov
[49]) and equality is attained when 𝜃 = (1, 1, 0, . . . , 0)/

√
2.

We thus see that volumes of central hyperplane sections of the unit cube can fluc-
tuate between the values 1 and

√
2. What is the “typical value” within this interval

[1,
√

2]?

Claim 1.1. For a typical 𝜃 ∈ 𝑆𝑛−1, and in particular for 𝜃 = (1, . . . , 1)/
√
𝑛, we have

Vol𝑛−1
(
𝜃⊥ ∩𝑄𝑛

)
=

1
√

2𝜋
·
√

12 ·
(
1 +𝑂

(
1
𝑛

))
. (1.4)

Here, “typical” refers to the uniform probability measure on 𝑆𝑛−1, to be described
shortly.

Claim 1.1 is related to the classical Central Limit Theorem (CLT). Indeed, if

𝑋 = (𝑋1, . . . , 𝑋𝑛) ∼ Unif(𝑄𝑛),

i.e., the random variables 𝑋1, . . . , 𝑋𝑛 ∼ Unif([−1/2, 1/2]) are independent, then
𝑛∑︁
𝑖=1

𝜃𝑖𝑋𝑖 = ⟨𝑋, 𝜃⟩

is approximately Gaussian for 𝜃 = (1, . . . , 1)/
√
𝑛, as well as for other choices of a

vector of coefficients 𝜃 ∈ 𝑆𝑛−1. More precisely, we have the following classical result:
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Theorem 1.2 (CLT, version 1). For any 𝜃 ∈ 𝑆𝑛−1 and 𝑡 ∈ R,����P (√
12⟨𝑋, 𝜃⟩ ≤ 𝑡

)
− 1

√
2𝜋

∫ 𝑡

−∞
𝑒−𝑠

2/2𝑑𝑠

���� ≤ 𝐶 𝑛∑︁
𝑖=1

𝜃4
𝑖 , (1.5)

where 𝐶 > 0 is a universal constant. (Note that
√

12⟨𝑋, 𝜃⟩ is a random variable of
mean zero and variance one.)

The usual proof of Theorem 1.2 involves the Fourier inversion formula, see e.g.
Feller [22, Chapter XVI] or the guided exercise below.

If 𝜃 = (1, 0, . . . , 0) then
∑
𝑖 𝜃

4
𝑖
= 1 and inequality (1.5) is vacuous. However, for a

typical 𝜃 ∈ 𝑆𝑛−1, including the case 𝜃 = (1, . . . , 1)/
√
𝑛, we have∑︁

𝑖

𝜃4
𝑖 = 𝑂

(
1
𝑛

)
, (1.6)

which is the correct rate of approximation in the CLT for the high-dimensional cube.1

Let us provide a geometric interpretation of the CLT for the cube. Write 𝑓𝜃 : R→
[0,∞) for the density of the random vector ⟨𝑋, 𝜃⟩. A moment of reflection reveals that

𝑓𝜃 (𝑡) = Vol𝑛−1
(
𝐻𝜃,𝑡 ∩𝑄𝑛

)
where

𝐻𝜃,𝑡 = {𝑥 ∈ R𝑛 ; ⟨𝑥, 𝜃⟩ = 𝑡} (1.7)

is a hyperplane orthogonal to 𝜃 ∈ 𝑆𝑛−1 of distance |𝑡 | from the origin. By Fubini’s
theorem, for 𝑠 < 𝑡,

Vol𝑛 ({𝑥 ∈ 𝑄𝑛 ; 𝑠 ≤ ⟨𝑥, 𝜃⟩ ≤ 𝑡}) = P(𝑠 ≤ ⟨𝑋, 𝜃⟩ ≤ 𝑡) =

∫ 𝑡

𝑠

𝑓𝜃 (𝑟)𝑑𝑟.

Thus Theorem 1.2 provides Gaussian asymptotic estimates for the volume of the inter-
section of the unit cube with various planks; a plank is the region in space bounded
by two parallel hyperplanes. Observe that

1
√

12
𝑓𝜃

(
𝑡

√
12

)
(𝑡 ∈ R)

is the density of the random variable
√

12⟨𝑋, 𝜃⟩. Theorem 1.2 admits the following
variant:

1It is a better (faster) rate than the 𝑂 (1/
√
𝑛) rate that we have for the CLT for the discrete

cube {−1, 1}𝑛, and which also appears in the Berry-Esseen bound, see Feller [22, Chapter XVI].
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Theorem 1.3 (CLT, version 2). Under the assumptions of Theorem 1.2,���� 1
√

12
𝑓𝜃

(
𝑡

√
12

)
− 1
√

2𝜋
𝑒−𝑡

2/2
���� ≤ 𝐶 𝑛∑︁

𝑖=1
𝜃4
𝑖 ,

where 𝐶 > 0 is a universal constant.

Theorem 1.3 with 𝑡 = 0 justifies Claim 1.1 above, and may be used in order to show
that the volume of typical central hyperplane sections of the cube concentrate around
the value

√︁
6/𝜋. Thus, when considering volumes of hyperplane sections, we observe

a simpler behavior for the high-dimensional cube than for the cube in dimension 5,
say.

Let us also mention that the corresponding question of volumes of hyperplane
projections of the cube is easier to analyze; for any 𝜃 ∈ 𝑆𝑛−1 we have the McMullen
formula (see [46]),

Vol𝑛−1 (𝑃𝑟𝑜 𝑗𝜃⊥ (𝑄𝑛)) =
𝑛∑︁
𝑖=1

|𝜃𝑖 |, (1.8)

where 𝑃𝑟𝑜 𝑗𝜃⊥ : R𝑛 → 𝜃⊥ is the orthogonal projection operator, i.e., 𝑃𝑟𝑜 𝑗𝜃⊥𝑥 = 𝑥 −
⟨𝑥, 𝜃⟩𝜃.

1.2 The Euclidean unit ball and sphere

The unit cube in R𝑛 has volume one. By contrast, the volume of the Euclidean unit
ball 𝐵𝑛 = {𝑥 ∈ R𝑛 ; |𝑥 | ≤ 1} is extremely tiny:

𝜅𝑛 := Vol𝑛 (𝐵𝑛) =
𝜋𝑛/2

Γ(𝑛/2 + 1) =

(√
2𝜋𝑒 + 𝑜(1)

√
𝑛

)𝑛
. (1.9)

This is usually proven along the lines of (1.15) below. We thus need to scale the Euc-
lidean unit ball by a factor of the order of

√
𝑛 in order to obtain a body of volume one.

More precisely, the radius of the Euclidean ball of volume one is

𝑟𝑛 = 𝜅
−1/𝑛
𝑛 ≈

√
𝑛

√
2𝜋𝑒

,

since Vol𝑛 (𝑟𝑛𝐵𝑛) = 𝑟𝑛𝑛 · 𝜅𝑛 = 1. We scale the Euclidean unit ball by a factor of
√
𝑛,

and consider a random vector

𝑋 ∼ Unif(
√
𝑛𝐵𝑛),

where 𝜆𝐾 = {𝜆𝑥 ; 𝑥 ∈ 𝐾} for 𝜆 ∈ R and 𝐾 ⊆ R𝑛.



6

Is it true that the random vector ⟨𝑋, 𝜃⟩ is approximately Gaussian for 𝜃 ∈ 𝑆𝑛−1,
like in the case of the high-dimensional cube?

The answer is yes. In fact, by symmetry, the distribution of ⟨𝑋, 𝜃⟩ does not depend
on 𝜃 ∈ 𝑆𝑛−1, and we may write 𝑓𝜃 (𝑡) = 𝑓 (𝑡) for the density of ⟨𝑋, 𝜃⟩. Thus,

𝑓𝜃 (𝑡) =
Vol𝑛−1(𝐻𝜃,𝑡 ∩

√
𝑛𝐵𝑛)

Vol𝑛 (
√
𝑛𝐵𝑛)

(𝑡 ∈ R),

with 𝐻𝜃,𝑡 as in (1.7). When |𝑡 | ≤
√
𝑛, the slice

𝐻𝜃,𝑡 ∩
√
𝑛𝐵𝑛

is an (𝑛 − 1)-dimensional ball of radius
√
𝑛 − 𝑡2, by the Pythagoras theorem. Con-

sequently,

𝑓 (𝑡) =
𝜅𝑛−1(

√︁
(𝑛 − 𝑡2)+)𝑛−1

𝑛𝑛/2𝜅𝑛
= 𝑐𝑛

(
1 − 𝑡2

𝑛

) 𝑛−1
2

+
(1.10)

with 𝑐𝑛 = 𝜅𝑛−1/(
√
𝑛𝜅𝑛) = 1/

√
2𝜋 +𝑂 (1/𝑛) by the Stirling formula. The proof of the

CLT for the uniform distribution on the cube requires indirect tools such as the Fourier
transform. In contrast, the case of the Euclidean ball is conceptually simpler, even
though the random variables 𝑋1, . . . , 𝑋𝑛 are no longer independent:2

Proposition 1.4. For any 𝑡 ∈ R,���� 𝑓 (𝑡) − 1
√

2𝜋
𝑒−𝑡

2/2
���� ≤ 𝐶

𝑛
, (1.11)

where 𝐶 > 0 is a universal constant.

Proof. If |𝑡 | ≥ 𝑛1/4 then 𝑒−𝑡2/2 ≤ 𝑒−
√
𝑛/2 ≤ 𝐶/𝑛 while(

1 − 𝑡2

𝑛

) 𝑛−1
2

+
≤ 𝑒−𝑡2 (𝑛−1)/(2𝑛) ≤ 𝐶

𝑛
,

and the bound (1.11) holds true. If |𝑡 | ≤ 𝑛1/4 then we may use the Taylor approximation
log(1 − 𝑥) = −𝑥 +𝑂 (𝑥2) for |𝑥 | ≤ 1/2, which yields

𝑛 − 1
2

log
(
1 − 𝑡2

𝑛

)
= −𝑛 − 1

2
𝑡2

𝑛
+𝑂

(
𝑡4

𝑛

)
= − 𝑡

2

2
+𝑂

(
𝑡4 + 1
𝑛

)
.

2When was it discovered that the marginals of the high-dimensional sphere are approxim-
ately Gaussian? Diaconis and Freedman [18, Section 6] searched in vain for this observation in
Poincaré’s writings, but found it in Borel’s book from 1914 in connection with the kinetic theory
of gas.
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Therefore, for |𝑡 | ≤ 𝑛1/4,(
1 − 𝑡2

𝑛

) 𝑛−1
2

+
= exp

[
−𝑡2/2 +𝑂

(
𝑡4 + 1
𝑛

)]
= 𝑒−

𝑡2
2 +𝑂

(
1
𝑛

)
. (1.12)

Where is the “bulk” of the mass of the high-dimensional Euclidean ball located?
One answer is “near the boundary”. Recall that a star body in R𝑛 is a subset 𝐾 ⊆ R𝑛

such that 𝑡𝐾 ⊆ 𝐾 for 0 ≤ 𝑡 ≤ 1. A property of the high-dimensional Euclidean ball,
or any star body in R𝑛, is that most of its mass lies near the boundary. Indeed, when
𝑋 ∼ Unif(𝐵𝑛), for any 0 ≤ 𝑡 ≤ 1,

P( |𝑋 | ≤ 𝑡) = Vol𝑛 (𝑡𝐵𝑛)
Vol𝑛 (𝐵𝑛)

= 𝑡𝑛. (1.13)

It follows that for 𝑛 ≥ 2,

P
(
1 − 1

𝑛
≤ |𝑋 | ≤ 1

)
= 1 −

(
1 − 1

𝑛

)𝑛
≥ 1

2
. (1.14)

We see from (1.14) that most of the mass of the unit ball is located at distance only
𝑂 (1/𝑛) from its boundary, which is the unit sphere. Consequently, the distribution of
volume on the high-dimensional Euclidean ball is rather close to that on the high-
dimensional sphere, and results on 𝑆𝑛−1 can often be translated to corresponding
results on 𝐵𝑛 and vice versa.

Another answer for the above question is that the bulk of the mass of the high-
dimensional Euclidean ball (or sphere) is located near the equator, as we will now
explain.

We slightly prefer to work with the unit sphere 𝑆𝑛−1, since it is a homogeneous
space, admitting a transitive group of symmetries. In other words, all points of the
sphere 𝑆𝑛−1 have an “equal status”, while the ball 𝐵𝑛 contains “special points” such
as the origin. What is the volume of the Euclidean unit sphere? By integrating in polar
coordinates,

Vol𝑛 (𝐵𝑛) = Vol𝑛−1(𝑆𝑛−1) ·
∫ 1

0
𝑟𝑛−1𝑑𝑟 =

1
𝑛
· Vol𝑛−1(𝑆𝑛−1).

We have thus established the following:

Claim 1.5.
Vol𝑛−1(𝑆𝑛−1) = 𝑛𝜅𝑛.
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We write𝜎𝑛−1 for the uniform probability measure on 𝑆𝑛−1. The probability meas-
ure 𝜎𝑛−1 can either be viewed as the normalized surface area measure on 𝑆𝑛−1, or as
the unique rotationally-invariant (Haar) probability measure on 𝑆𝑛−1.

It is quite common to replace spherical integrals with a Gaussian computation via
integration in polar coordinates. Indeed, let

𝑍 = (𝑍1, . . . , 𝑍𝑛)

be a standard Gaussian vector in R𝑛 (i.e., its components are independent, standard
Gaussian random variables). Let 𝑓 : R𝑛 → R be a positively 𝑝-homogeneous function
(i.e., 𝑓 (𝜆𝑥) = 𝜆𝑝 𝑓 (𝑥) for 𝜆 > 0 and 𝑥 ∈ R𝑛) which is locally integrable. Then,

E 𝑓 (𝑍) = (2𝜋)−𝑛/2
∫
R𝑛

𝑓 (𝑥)𝑒−|𝑥 |2/2𝑑𝑥

= (2𝜋)−𝑛/2 · 𝑛𝜅𝑛 ·
∫ ∞

0

∫
𝑆𝑛−1

𝑓 (𝑟𝜃)𝑒−|𝑟 𝜃 |2/2𝑟𝑛−1𝑑𝑟𝑑𝜎𝑛−1(𝜃)

= 𝐶𝑛,𝑝

∫
𝑆𝑛−1

𝑓 (𝜃)𝑑𝜎𝑛−1(𝜃), (1.15)

where𝐶𝑛,𝑝 = 2𝑝/2−1 · 𝑛 · Γ( 𝑛+𝑝2 )/Γ( 𝑛+2
2 ). For instance, in order to show that a typical

vector 𝜃 ∈ 𝑆𝑛−1 satisfies (1.6), we may argue as follows:∫
𝑆𝑛−1

(
𝑛∑︁
𝑖=1

𝜃4
𝑖

)
𝑑𝜎𝑛−1(𝜃) =

1
𝐶𝑛,4

E
𝑛∑︁
𝑖=1

𝑍4
𝑖 =

1
𝑛(𝑛 + 2) · 3𝑛 =

3
𝑛 + 2

,

as E𝑍4
1 = 3. See the exercises below for more information on the distribution of

∑
𝑖 𝜃

4
𝑖

where 𝜃 = (𝜃1, . . . , 𝜃𝑛) is a uniformly-distributed random vector in the sphere 𝑆𝑛−1.
Another relation between the uniform measures on the ball and the sphere is the fol-
lowing fact, going back to Archimedes in the case 𝑛 = 3.

Proposition 1.6. For 𝑛 ≥ 3, if

𝑋 = (𝑋1, . . . , 𝑋𝑛) ∼ Unif(𝑆𝑛−1)

then
(𝑋1, . . . , 𝑋𝑛−2) ∼ Unif(𝐵𝑛−2).

An analytic way to prove this is to note that by calculus, (𝑋1, . . . , 𝑋𝑛−1) has density
on 𝐵𝑛−1 which equals 𝑐𝑛/

√︁
1 − |𝑥 |2. We now integrate the density of (𝑋1, . . . , 𝑋𝑛−1)

along a suitable segment and obtain that the density of (𝑋1, . . . , 𝑋𝑛−2) at the point
𝑦 ∈ 𝐵𝑛−2 is

𝑐𝑛

∫ √
1−|𝑦 |2

−
√

1−|𝑦 |2

𝑑𝑡√︁
1 − |𝑦 |2 − 𝑡2

= 𝑐𝑛

∫ 1

−1

𝑑𝑠
√

1 − 𝑠2
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which is independent of 𝑦 ∈ 𝐵𝑛−2. Here we changed variables 𝑠 = 𝑡/
√︁

1 − |𝑦 |2.

Corollary 1.7. If 𝑋 = (𝑋1, . . . , 𝑋𝑛) ∼ Unif(𝑆𝑛−1), then for 𝑡 ≥ 0,

P
(√
𝑛|𝑋1 | ≥ 𝑡

)
≤ 𝐶𝑒−𝑡2/2 (1.16)

where 𝐶 > 0 is a universal constant.

Proof I. Since (𝑋1, . . . , 𝑋𝑛−2) ∼ Unif(𝐵𝑛−2), the density of
√
𝑛𝑋1 equals

𝑐𝑛

(
1 − 𝑥2

𝑛

) 𝑛−3
2

+
(𝑥 ∈ R)

with 𝑐𝑛 = 1/
√

2𝜋 +𝑂 (1/𝑛). Hence, for 0 ≤ 𝑡 ≤
√
𝑛,

P
(√
𝑛|𝑋1 | ≥ 𝑡

)
= 2

∫ √
𝑛

𝑡

𝑐𝑛

(
1 − 𝑥2

𝑛

) 𝑛−3
2

+
𝑑𝑥 ≤ 𝐶

∫ ∞

𝑡

𝑒−𝑥
2 (𝑛−3)/(2𝑛)𝑑𝑥.

For 𝑡 ∉ [1,
√
𝑛] conclusion (1.16) is trivial, while for 1 ≤ 𝑡 ≤

√
𝑛 we may use that∫ ∞

𝑡
𝑥𝑒−𝑥

2/2𝑑𝑥 = 𝑒−𝑡
2/2 and elementary manipulations to conclude (1.16).

Proof II (which I essentially learned from Afonso Bandeira). We may assume that 𝑡 ≤√
𝑛, since otherwise the probability in question vanishes. Since

∑𝑛
𝑖=1 𝑋

2
𝑖
= 1 we have

P
(
|𝑋1 | ≥ 𝑡/

√
𝑛
)
≤ P

(
𝑋2

1 + 𝑋2
2 ≥ 𝑡2

𝑛

)
= P

(
𝑛∑︁
𝑖=3

𝑋2
𝑖 ≤ 1 − 𝑡2

𝑛

)
.

The random vector (𝑋3, . . . , 𝑋𝑛) is distributed uniformly in 𝐵𝑛−2, according to Pro-
position 1.6. Therefore, by (1.13),

P

(
𝑛∑︁
𝑖=3

𝑋2
𝑖 ≤ 1 − 𝑡2

𝑛

)
=

(
1 − 𝑡2

𝑛

) 𝑛−2
2

≤ 𝑒−
𝑡2
2 · 𝑛−2

𝑛 ≤ 𝐶𝑒− 𝑡2
2

with 𝐶 = 𝑒.

In particular, we learn from Corollary 1.7 that when 𝑋 ∼ Unif(𝑆𝑛−1),

P ( |𝑋1 | ≥ 1/10) ≤ 𝐶𝑒−𝑐𝑛,

which is exponentially small in the dimension 𝑛. Thus,
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Proposition 1.8. Most of the mass of the high-dimensional sphere 𝑆𝑛−1 is located
rather close to the equator

{𝑥 ∈ 𝑆𝑛−1 ; 𝑥1 = 0},

i.e., at distance roughly 𝑂 (1/
√
𝑛) from this equator. By the symmetries of the sphere,

the same applies for any equator

{𝑥 ∈ 𝑆𝑛−1 ; ⟨𝑥, 𝜃⟩ = 0},

with 𝜃 ∈ 𝑆𝑛−1.

This startling high-dimensional effect is a manifestation of the concentration of
measure phenomenon on the high-dimensional sphere.

1.3 The isoperimetric inequality on the sphere

The isoperimetric inequality on the sphere allows us to make effective use of this
concentration phenomenon. For 𝐴 ⊆ 𝑆𝑛−1 and 𝜀 > 0 consider the 𝜀-neighborhood of
the set 𝐴, defined as

𝐴𝜀 =
{
𝑥 ∈ 𝑆𝑛−1 ; 𝑑 (𝑥, 𝐴) < 𝜀

}
where 𝑑 (𝑥, 𝐴) = inf𝑦∈𝐴 𝑑 (𝑥, 𝑦) and 𝑑 (𝑥, 𝑦) = |𝑥 − 𝑦 | is the Euclidean distance between
𝑥, 𝑦 ∈ 𝑆𝑛−1. Another option is to work with the geodesic distance on the sphere, namely
𝜌(𝑥, 𝑦) = arccos⟨𝑥, 𝑦⟩ ∈ [0, 𝜋]. The Euclidean distance (also called here the “tunnel
distance”) is always shorter than the geodesic distance, though not by much: it is shorter
by a multiplicative factor that does not exceed 𝜋/2. These two distances are essentially
equivalent for our needs; note that cos 𝜌(𝑥, 𝑦) = 1 − 𝑑2(𝑥, 𝑦)/2.

For example, the 𝜀-neighborhood of the hemisphere

𝐻 =
{
𝑥 ∈ 𝑆𝑛−1 ; 𝑥1 ≤ 0

}
,

is
𝐻𝜀 =

{
𝑥 ∈ 𝑆𝑛−1 ; 𝑥1 ≤ 𝜀 ·

√︁
1 − 𝜀2/4

}
.

Clearly 𝜎𝑛−1(𝐻) = 1/2, while by the concentration of measure bound (1.16),

𝜎𝑛−1(𝐻𝜀) = P(𝑋1 ≤ 𝜀 ·
√︁

1 − 𝜀2/4) ≥ P (𝑋1 ≤ 𝜀/2) ≥ 1 − 𝐶𝑒−𝑐𝜀2𝑛. (1.17)

Thus, the measure of the 𝜀-neighborhood of the hemisphere is very close to one if,
say, 𝜀 = 1/10 and 𝑛 is large. The isoperimetric inequality of P. Lévy [25, 52] states
that among all sets of 𝜎𝑛−1-measure equal to 1/2, the hemisphere minimizes the meas-
ure of the 𝜀-neighborhood. Since the 𝜀-neighborhood of the hemisphere already has
relatively large measure, this fact has far-reaching consequences.
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Theorem 1.9 (spherical isoperimetric inequality). For any measurable subset 𝐴 ⊆
𝑆𝑛−1 and any 𝜀 > 0,

𝜎𝑛−1(𝐴) ≥
1
2

=⇒ 𝜎𝑛−1(𝐴𝜀) ≥ 𝜎𝑛−1(𝐻𝜀) (1.18)

where 𝐻 ⊆ 𝑆𝑛−1 is a hemisphere. Moreover, for any 0 < 𝑡 < 1,

𝜎𝑛−1(𝐴) ≥ 𝑡 =⇒ 𝜎𝑛−1(𝐴𝜀) ≥ 𝜎𝑛−1(𝐻 (𝑡 )
𝜀 )

where 𝐻 (𝑡 ) ⊆ 𝑆𝑛−1 is a spherical cap with 𝜎𝑛−1(𝐻 (𝑡 ) ) = 𝑡. A spherical cap is the
intersection of 𝑆𝑛−1 with a half-space in R𝑛.

There are several proofs of the spherical isoperimetric inequality; two symmetriza-
tion proofs are explained in Benyamini [5] and in the Appendix of Figiel, Lindenstrauss
and Milman [23]. We will discuss the proof of Theorem 1.9 in the next lecture. Thanks
to Theorem 1.9 and the bound (1.17), we may leverage the concentration of measure
phenomenon as follows:

Corollary 1.10. For any 𝐴 ⊆ 𝑆𝑛−1 and 𝜀 > 0,

𝜎𝑛−1(𝐴) ≥
1
2

=⇒ 𝜎𝑛−1(𝐴𝜀) ≥ 1 − 𝐶 exp(−𝑐𝜀2𝑛), (1.19)

where 𝐶, 𝑐 > 0 are universal constants.

The constant 1/2 in (1.19) may be replaced by 1/10 or any other universal constant,
at the expense of adjusting the values of the universal constants 𝐶 and 𝑐. Corollary
1.10 tells us that for any measurable set 𝐴 ⊆ 𝑆𝑛−1 with 1/10 ≤ 𝜎𝑛−1(𝐴) ≤ 9/10, most
of the mass of the sphere is located near the boundary of 𝐴, i.e., at distance on the
order of 𝑂 (1/

√
𝑛) from the “non-linear equator” 𝜕𝐴. This provides a rather striking

answer to our question: where is the “bulk” of the mass of the high-dimensional sphere
located?

While Theorem 1.9 is not too difficult to prove, in these lectures we will only prove
the weaker Corollary 1.10, which would suffice for all of our needs. Our proof is based
on the classical Brunn-Minkowski inequality from 1887:

Theorem 1.11. (Brunn-Minkowski) Let 𝑆, 𝑇 ⊆ R𝑛 be non-empty Borel sets. Then,

Vol𝑛 (𝑆 + 𝑇)1/𝑛 ≥ Vol𝑛 (𝑆)1/𝑛 + Vol𝑛 (𝑇)1/𝑛, (1.20)

where 𝑆 + 𝑇 = {𝑠 + 𝑡 ; 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇} is the Minkowski sum.3

3The Minkowski sum of two Borel sets inR𝑛 is Lebesgue measurable. For more information,
see e.g. the first pages in Carleson [15]. Observe that by inner regularity of the Lebesgue measure,
the Brunn-Minkowski inequality for Borel sets follows from the corresponding inequality for
compact sets.
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Note that for any convex set 𝐾 ⊆ R𝑛 and 𝑟1, 𝑟2 > 0,

𝑟1𝐾 + 𝑟2𝐾 = (𝑟1 + 𝑟2)𝐾. (1.21)

In fact, (1.21) is the very definition of a convex set. Therefore, when 𝐾 is convex,

Vol𝑛 (𝑟𝑖𝐾)1/𝑛 = 𝑟𝑖 · Vol𝑛 (𝐾)1/𝑛 (𝑖 = 1, 2)

while
Vol𝑛 (𝑟1𝐾 + 𝑟2𝐾)1/𝑛 = (𝑟1 + 𝑟2) · Vol𝑛 (𝐾)1/𝑛.

Thus equality holds in the Brunn-Minkowski inequality when 𝑆 and 𝑇 are 𝑟1𝐾 and
𝑟2𝐾 , respectively. In fact, when 𝑆 and 𝑇 are assumed compact, equality in (1.20) holds
true if and only if 𝑆 and 𝑇 are convex and homothetic, see Henstock and Macbeath
[32]. Thus the Brunn-Minkowski inequality is closely related to convex sets, even
though convexity does not appear in its formulation. A dimension-free corollary of
the Brunn-Minkowski inequality is the following:

Corollary 1.12. For any Borel sets 𝑆, 𝑇 ⊆ R𝑛 and 0 < 𝜆 < 1,

Vol ((1 − 𝜆)𝑆 + 𝜆𝑇) ≥ Vol(𝑆)1−𝜆Vol(𝑇)𝜆. (1.22)

This multiplicative Brunn-Minkowski inequality holds true also when 𝑆 or 𝑇 are
empty, as opposed to Theorem 1.11. In order to prove (1.22), say in the case 𝜆 = 1/2,
we apply Theorem 1.11 and the arithmetic/geometric means inequality as follows:

Vol𝑛
(
𝑆 + 𝑇

2

)1/𝑛
≥ Vol𝑛 (𝑆)1/𝑛 + Vol𝑛 (𝑇)1/𝑛

2
≥

(√︁
Vol𝑛 (𝑆)Vol𝑛 (𝑇)

)1/𝑛
.

The case of a general 𝜆 ∈ (0, 1) is similar.

Proof of Corollary 1.10 using the Brunn-Minkowski inequality. We follow Gromov and
Milman [26]. We may assume that 𝑛 ≥ 3 and

𝜀 ≥ 2/
√
𝑛 (1.23)

since otherwise the conclusion is vacuous. Let 𝐴 ⊆ 𝑆𝑛−1 satisfy 𝜎𝑛−1(𝐴) ≥ 1/2, and
let 𝐵 ⊆ 𝑆𝑛−1 be the complement of 𝐴𝜀 . Thus, for 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵,

|𝑥 − 𝑦 | ≥ 𝜀. (1.24)

In order to use the Brunn-Minkowski inequality on volumes in R𝑛 we need to pass
from (𝑛 − 1)-dimensional subsets of the sphere to 𝑛-dimensional sets in the unit ball.
Fortunately, the uniform probability measure on the sphere is very close to that of the
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ball. That is, consider the following slight radial extension of the sets 𝐴 and 𝐵 into the
unit ball:

𝑆 =
⋃

1− 1
𝑛
≤𝑟≤1

𝑟𝐴, 𝑇 =
⋃

1− 1
𝑛
≤𝑟≤1

𝑟𝐵.

Then,
Vol𝑛 (𝑆)

Vol𝑛 (𝐵𝑛)
= (1 − (1 − 1/𝑛)𝑛) 𝜎𝑛−1(𝐴) ≥

𝜎𝑛−1(𝐴)
2

≥ 1
4

(1.25)

and similarly
Vol𝑛 (𝑇)

Vol𝑛 (𝐵𝑛)
≥ 𝜎𝑛−1(𝐵)

2
. (1.26)

By (1.23) and (1.24), for any 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑇 ,

|𝑥 − 𝑦 | ≥ 𝜀 − 2
𝑛
≥ 𝑐𝜀

for, say, 𝑐 = 1/4. Since 𝑥 and 𝑦 are far apart, the uniform convexity of the sphere implies
that their midpoint is deep inside the ball. That is, for any 𝑥, 𝑦 ∈ 𝐵𝑛 with |𝑥 − 𝑦 | ≥ 𝑐𝜀,���𝑥 + 𝑦2

���2 =
|𝑥 |2 + |𝑦 |2

2
− |𝑥 − 𝑦 |2

4
≤ 1 − 𝑐𝜀2

for some universal constant 𝑐 > 0. Hence,

𝑆 + 𝑇
2

⊆
√︁

1 − 𝑐𝜀2 · 𝐵𝑛 ⊆
(
1 − 𝑐𝜀2

)
· 𝐵𝑛.

Consequently, from the multiplicative Brunn-Minkowski inequality,

(1 − 𝑐𝜀2)𝑛 ≥
Vol𝑛

(
𝑆+𝑇

2

)
Vol𝑛 (𝐵𝑛)

≥
√︁

Vol𝑛 (𝑆)Vol𝑛 (𝑇)
Vol𝑛 (𝐵𝑛)

≥
√︂

1
4
· 𝜎𝑛−1(𝐵)

2
,

where we used (1.25) and (1.26) in the last passage. Hence,

1 − 𝜎𝑛−1(𝐴𝜀) = 𝜎𝑛−1(𝐵) ≤ 𝐶 (1 − 𝑐𝜀2)𝑛 ≤ 𝐶𝑒−𝑐̄ 𝜀2𝑛,

and (1.19) is proven.

This proof of Corollary 1.10 relies heavily on the uniform convexity of the Euc-
lidean ball/sphere, the fact that the midpoint between two points in the ball that are far
apart, must lie deep inside the ball. It admits generalization to other uniformly convex
sets, see the exercises below.
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Hadwiger-Ohman proof of Theorem 1.11. Consider first the case where 𝑆,𝑇 ⊆ R𝑛 are
two parallel boxes, of edge length 𝑎1, . . . , 𝑎𝑛 > 0 and 𝑏1, . . . , 𝑏𝑛 > 0 respectively, we
have

Vol𝑛 (𝑆 + 𝑇) =
𝑛∏
𝑖=1

(𝑎𝑖 + 𝑏𝑖).

Here the boxes may be open or closed; for concreteness let us work here with boxes
of the form

∏𝑛
𝑖=1 [𝑐𝑖 , 𝑑𝑖) where 𝑐𝑖 < 𝑑𝑖 for all 𝑖. The Brunn-Minkowski inequality for

two parallel boxes thus amounts to the inequality(
𝑛∏
𝑖=1

(𝑎𝑖 + 𝑏𝑖)
)1/𝑛

≥
(
𝑛∏
𝑖=1

𝑎𝑖

)1/𝑛

+
(
𝑛∏
𝑖=1

𝑏𝑖

)1/𝑛

.

This inequality follows from the arithmetic/geometric means inequality, since(
𝑛∏
𝑖=1

𝑎𝑖

𝑎𝑖 + 𝑏𝑖

)1/𝑛

+
(
𝑛∏
𝑖=1

𝑏𝑖

𝑎𝑖 + 𝑏𝑖

)1/𝑛

≤ 1
𝑛

𝑛∑︁
𝑖=1

[
𝑎𝑖

𝑎𝑖 + 𝑏𝑖
+ 𝑏𝑖

𝑎𝑖 + 𝑏𝑖

]
= 1. (1.27)

We move on to the case of general 𝑆 and𝑇 . By approximation, we may assume that
both 𝑆 and 𝑇 can be written as the union of finitely many disjoint boxes, all parallel
to the axes. Consider representations of 𝑆 and of 𝑇 as disjoint unions of finitely many
boxes, and write 𝑁 for the number of boxes appearing in the representation of 𝑆 plus
the number of boxes appearing in the representation of𝑇 . We prove (1.20) by induction
on 𝑁 .

Since 𝑆 and 𝑇 are non-empty, the base of the induction is the case 𝑁 = 2. In this
case, 𝑆 and𝑇 must be two parallel boxes, and the Brunn-Minkowski inequality follows
from the arithmetic/geometric means inequality (1.27).

Suppose that 𝑁 ≥ 3. Then the representation of the 𝑆 or of the set 𝑇 consists of at
least two disjoint boxes; without loss of generality assume that it is the set 𝑆. Let 𝑄
and 𝑄̃ be two disjoint boxes from the representation of 𝑆. A crucial observation is that
since the boxes 𝑄 and 𝑄̃ are disjoint, there exists a hyperplane

𝐻 ⊆ R𝑛

parallel to the axes that separates 𝑄 from 𝑄̃. Writing 𝐻 of the form {𝑥 ∈ R𝑛 ; 𝑥𝑖 = 𝑡}
for some 𝑖 = 1, . . . , 𝑛 and 𝑡 ∈ R, we look at the half-spaces,

𝐻1 = {𝑥 ∈ R𝑛 ; 𝑥𝑖 < 𝑡}, 𝐻2 = {𝑥 ∈ R𝑛 ; 𝑥𝑖 ≥ 𝑡}. (1.28)

These are two disjoint half-spaces whose union equalsR𝑛. Each of these two halfspaces
is disjoint either from the box 𝑄 or from the box 𝑄̃. For 𝑖 = 1, 2 denote

𝑆𝑖 = 𝑆 ∩ 𝐻𝑖 .
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Clearly, 𝑆𝑖 may be represented as a disjoint union of finitely many boxes; in fact, each
of the boxes of 𝑆 contributes at most one box to the representation 𝑆𝑖 , with either𝑄 or
𝑄̃ not contributing at all. Thus the total number of disjoint boxes in the representation
of 𝑆𝑖 is strictly smaller than in the representation of 𝑆. Set

𝜆 =
Vol𝑛 (𝑆1)
Vol𝑛 (𝑆)

∈ (0, 1), 1 − 𝜆 =
Vol𝑛 (𝑆2)
Vol𝑛 (𝑆)

.

For 𝑠 ∈ R we consider the hyperplane 𝐻̃ = 𝐻̃ (𝑠) = {𝑥 ∈ R𝑛 ; 𝑥𝑖 = 𝑠} that is parallel
to 𝐻, and we define 𝐻̃1 = 𝐻̃1(𝑠) and 𝐻̃2 = 𝐻̃2(𝑠) analogously to (1.28), i.e., with 𝑡
replaced by 𝑠. Consider the fraction

Vol𝑛 (𝑇 ∩ 𝐻̃1(𝑠))
Vol𝑛 (𝑇)

. (1.29)

When we let 𝑠 vary continuously, the fraction in (1.29) varies continuously from 0
to 1. By the mean value theorem, there exists a hyperplane 𝐻̃ parallel to 𝐻 such that
denoting

𝑇𝑖 = 𝑇 ∩ 𝐻̃𝑖 (𝑖 = 1, 2)

we have
Vol𝑛 (𝑇1)
Vol𝑛 (𝑇)

= 𝜆, 1 − 𝜆 =
Vol𝑛 (𝑇2)
Vol𝑛 (𝑇)

.

For 𝑖 = 1, 2, the set 𝑇𝑖 may be represented as a disjoint union of finitely many boxes,
where each of the boxes in the representation of 𝑇 contributes at most one box to the
representation 𝑇𝑖 . Thus the number of boxes in the representation of 𝑇𝑖 is not larger
than in that of 𝑇 .

Hence the total number of boxes in the representations of 𝑆𝑖 and 𝑇𝑖 combined is at
most 𝑁 − 1. By the induction hypothesis,

Vol𝑛 (𝑆𝑖 + 𝑇𝑖)1/𝑛 ≥ Vol𝑛 (𝑆𝑖)1/𝑛 + Vol𝑛 (𝑇𝑖)1/𝑛.

Observe that the Minkowski sum 𝑆𝑖 + 𝑇𝑖 is contained in the set 𝐻𝑖 + 𝐻̃𝑖 , which is a
halfspace. Moreover, the halfspace 𝐻2 + 𝐻̃2 is the complement in R𝑛 to the halfspace
𝐻1 + 𝐻̃1. Consequently 𝑆1 + 𝑇1 and 𝑆2 + 𝑇2 are two disjoint subsets of 𝑆 + 𝑇 . Thus

Vol𝑛 (𝑆 + 𝑇) ≥
2∑︁
𝑖=1

Vol𝑛 (𝑆𝑖 + 𝑇𝑖) ≥
2∑︁
𝑖=1

(Vol𝑛 (𝑆𝑖)1/𝑛 + Vol𝑛 (𝑇𝑖)1/𝑛)𝑛

= [𝜆 + (1 − 𝜆)]
(
Vol𝑛 (𝑆)1/𝑛 + Vol𝑛 (𝑇𝑖)1/𝑛

)𝑛
,

completing the proof of (1.20).



16

The Brunn-Minkowski inequality implies the isoperimetric inequality inR𝑛, as we
shall now explain. Let 𝐴 ⊆ R𝑛 be an open set with a smooth boundary. For 0 < 𝜀 < 1,
the Minkowski sum

𝐴 + 𝜀𝐵𝑛

equals the 𝜀-neighborhood of 𝐴, which is of course the set

𝐴𝜀 = {𝑥 ∈ R𝑛 ; 𝑑 (𝑥, 𝐴) < 𝜀}

where 𝑑 (𝑥, 𝐴) = inf𝑦∈𝐴 |𝑥 − 𝑦 |. Assuming that 𝐴 is bounded and connected, it is proven
in multivariate calculus class that

Vol𝑛−1(𝜕𝐴) = lim
𝜀→0+

Vol𝑛 (𝐴𝜀) − Vol𝑛 (𝐴)
𝜀

. (1.30)

Corollary 1.13. For any connected, bounded, open set 𝐴 ⊆ R𝑛 with a smooth bound-
ary,

Vol𝑛−1(𝜕𝐴)
Vol𝑛 (𝐴)

𝑛−1
𝑛

≥ Vol𝑛−1(𝜕𝐵)
Vol𝑛 (𝐵)

𝑛−1
𝑛

, (1.31)

where 𝐵 ⊆ R𝑛 is any Euclidean ball. Moreover, if 𝐵 ⊆ R𝑛 is a ball with Vol𝑛 (𝐵) =
Vol𝑛 (𝐴) then for any 𝜀 > 0,

Vol𝑛 (𝐴𝜀) ≥ Vol𝑛 (𝐵𝜀). (1.32)

Proof of Corollary 1.13. We prove (1.32) by the Brunn-Minkowski inequality as fol-
lows:

Vol𝑛 (𝐴𝜀) = Vol𝑛 (𝐴 + 𝜀𝐵𝑛) ≥
[
Vol𝑛 (𝐴)1/𝑛 + Vol𝑛 (𝜀𝐵𝑛)1/𝑛]𝑛 (1.33)

=
[
Vol𝑛 (𝐵)1/𝑛 + 𝜀Vol𝑛 (𝐵𝑛)1/𝑛]𝑛 = Vol𝑛 (𝐵 + 𝜀𝐵𝑛) = Vol𝑛 (𝐵𝜀),

where we used the fact that 𝐵 is homothetic to 𝐵𝑛 and convex, and this yields equality
in Brunn-Minkowski.

In order to deduce (1.31), we use that Vol𝑛−1(𝑆𝑛−1) = 𝑛Vol𝑛 (𝐵𝑛) and hence

Vol𝑛−1(𝜕𝐵)
Vol𝑛 (𝐵)

𝑛−1
𝑛

=
Vol𝑛−1(𝜕𝐵𝑛)
Vol𝑛 (𝐵𝑛)

𝑛−1
𝑛

= 𝑛Vol𝑛 (𝐵𝑛)1/𝑛.

Consequently, by (1.33), for any 𝜀 > 0,

Vol𝑛 (𝐴𝜀) ≥
[
Vol𝑛 (𝐴)1/𝑛 + 𝜀Vol𝑛 (𝐵𝑛)

]𝑛
= Vol𝑛 (𝐴) + 𝑛𝜀Vol𝑛 (𝐴)

𝑛−1
𝑛 Vol𝑛 (𝐵𝑛)

1
𝑛 + 𝑜(𝜀)
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as 𝜀 → 0. Therefore, from formula (1.30) for the surface area,

Vol𝑛−1(𝜕𝐴) ≥ 𝑛Vol𝑛 (𝐴)
𝑛−1
𝑛 Vol𝑛 (𝐵𝑛)

1
𝑛 = Vol𝑛 (𝐴)

𝑛−1
𝑛 · Vol𝑛−1(𝜕𝐵)

Vol𝑛 (𝐵)
𝑛−1
𝑛

.

Convex sets 𝐾 ⊆ R𝑛 come to the world in pairs; this is especially true for centrally-
symmetric convex sets or convex cones. A convex body 𝐾 ⊆ R𝑛 is centrally-symmetric
when 𝐾 = −𝐾 . We recall that the polar body to a convex body 𝐾 ⊆ R𝑛 containing the
origin in its interior is

𝐾◦ = {𝑥 ∈ R𝑛 ; ∀𝑦 ∈ 𝐾, ⟨𝑥, 𝑦⟩ ≤ 1} .

We have (𝐾◦)◦ = 𝐾 with 𝐾 = 𝐾◦ if and only if 𝐾 = 𝐵𝑛 (exercise). When 𝐾 is a
polytope, there is a one-to-one correspondence between the vertices of 𝐾 and the
(𝑛 − 1)-dimensional facets of 𝐾◦. In particular, the number of vertices of 𝐾 equals
the number of facets of 𝐾◦.

The bodies 𝐾 and 𝐾◦ are kind-of “inverses” to each other. For instance, for any
invertible, linear map 𝑇 : R𝑛 → R𝑛,

(𝑇 (𝐾))◦ = (𝑇−1)∗(𝐾◦).

Theorem 1.14 (The Santaló and Bourgain-Milman inequalities). For any centrally-
symmetric convex body 𝐾 ⊆ R𝑛,

𝑐𝑛Vol𝑛 (𝐵𝑛)2 ≤ Vol𝑛 (𝐾)Vol𝑛 (𝐾◦) ≤ Vol𝑛 (𝐵𝑛)2, (1.34)

where 𝑐 > 0 is a universal constant. In fact, 𝑐 = 1/2 works according to Kuperberg [42].

The left-hand side inequality in (1.34) holds true without the central-symmetry
assumption, assuming only that 0 lies in the interior of 𝐾 . The right-hand side inequal-
ity in (1.34) holds true whenever 𝐾 ⊆ R𝑛 is a centered convex body, i.e., its barycenter
lies at the origin. The Mahler conjecture [44, 45] suggests that 𝑐 = 2/𝜋 should work
in (1.34), this was proven thus far for 𝑛 = 2, 3, see Iriyeh and Shibata[33]. For a sym-
metrization proof of the right-hand side of (1.34) see Meyer and Pajor [47], and for a
particularly elegant simplification of Kuperberg’s proof of the left-hand side of (1.34)
see Berndtsson [6].
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Exercises.

(1) Bernstein inequalities (closely related to Bennett, Hoeffding and Chernoff
inequalities; see [56, Chapter 2]): Let 𝑀 > 0 and let 𝑋1, . . . , 𝑋𝑛 be independ-
ent random variables. Assume that E𝑋𝑖 = 0 and P( |𝑋𝑖 | ≤ 𝑀) = 1 for all 𝑖. We
will prove that for all 𝑡 > 0,

P

(����� 𝑛∑︁
𝑖=1

𝑋𝑖

����� ≥ 𝑡√𝑛
)
≤ 𝐶𝑒−𝑐 (𝑡/𝑀 )2

,

where 𝑐, 𝐶 > 0 are universal constants. By scaling, we may reduce matters to
the case 𝑀 = 1.
(a) We will apply Markov’s inequality for exponential moments. Begin by

proving that for any 𝑠 > 0,

E𝑒𝑠𝑋1 =

∞∑︁
𝑘=0

E(𝑠𝑋1)𝑘
𝑘!

≤ 𝑒𝑠 − 𝑠 ≤ 𝑒𝑠2
,

where the last inequality is obvious for 𝑠 > 1 and follows from 𝑒𝑠 ≤ 1 +
𝑠 + 𝑠2 ≤ 𝑠 + 𝑒𝑠2 for 0 < 𝑠 < 1.

(b) Given 𝑡 > 0, find an appropriate 𝑠 > 0 so that

P

(
𝑛∑︁
𝑖=1

𝑋𝑖 ≥ 𝑡
)
= P

(
𝑒
∑𝑛

𝑖=1 𝑠𝑋𝑖 ≥ 𝑒𝑠𝑡
)
≤ 𝑒−𝑠𝑡

𝑛∏
𝑖=1

E𝑒𝑠𝑋𝑖 ≤ 𝑒−𝑡2/(4𝑛) .

(2) Recall the proof of (1.9) that you might have learned in your undergraduate
studies:

(2𝜋)𝑛/2 =

∫
R𝑛

𝑒−|𝑥 |
2/2𝑑𝑥 = Vol𝑛−1(𝑆𝑛−1) ·

∫ ∞

0
𝑒−𝑟

2/2𝑟𝑛−1𝑑𝑟

= 𝑛𝜅𝑛 · 2(𝑛−2)/2Γ(𝑛/2).

(3) Show that 𝑐𝑛 from (1.10) satisfies 𝑐𝑛 = 1/
√

2𝜋 + 𝑂 (1/𝑛) without using the
Stirling formula, but rather by using the Taylor approximation (1.12) as well
as the formula

𝑐−1
𝑛 =

∫ √
𝑛

−
√
𝑛

(
1 − 𝑡2

𝑛

) 𝑛−1
2

𝑑𝑡.

(4) In this exercise we outline the proof of Theorem 1.3 in the case

𝜃 =
(1, . . . , 1)

√
𝑛

∈ 𝑆𝑛−1.
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(a) Abbreviate 𝑓 (𝑡) = 𝑓𝜃

(
𝑡/
√

12
)
/
√

12, write sinc(𝑥) = sin(𝑥)/𝑥 and assume
that 𝑛 ≥ 2. Use the Fourier inversion formula in order to show that for
𝑡 ∈ R,

𝑓 (𝑡) = 1
2𝜋

∫ ∞

−∞
sinc𝑛

(√︂
3
𝑛
𝑥

)
𝑒𝑖𝑡 𝑥𝑑𝑥.

Conclude that���� 𝑓 (𝑡) − 1
√

2𝜋
𝑒−𝑡

2/2
���� ≤ 1

2𝜋
·
∫ ∞

−∞

�����sinc𝑛
(√︂

3
𝑛
𝑥

)
− 𝑒−𝑥2/2

����� 𝑑𝑥. (1.35)

(b) We bound the integral in (1.35) by𝐶/𝑛 by dividing it into three intervals.
Consider first the interval |𝑥 | ≤ 𝑛1/4, and use Taylor’s theorem in order to
show that in this interval, the integrand in (1.35) is at most 𝐶 𝑡4

𝑛
𝑒−𝑡

2/2.
(c) Bound the integral in (1.35) also for 𝑛1/4 ≤ |𝑥 | ≤

√
𝑛 and for |𝑥 | ≥

√
𝑛 and

conclude the proof.
(5) Let 𝑌 ∼ Unif(𝑆𝑛−1), and let 𝑍 ∼ 𝑁 (0, 1) be a standard Gaussian. Prove that

for any 𝑡 ∈ R, ��P (√
𝑛𝑌1 ≤ 𝑡

)
− P (𝑍 ≤ 𝑡)

�� ≤ 𝐶

𝑛
.

(6) (*) Let Θ = (Θ1, . . . ,Θ𝑛) ∈ 𝑆𝑛−1 be a uniformly distributed random vector.
Show that

P

(
𝑛∑︁
𝑖=1

Θ4
𝑖 ≥

𝐶

𝑛

)
≤ exp(−𝑐

√
𝑛)

for some universal constants 𝐶, 𝑐 > 0.

(Hint: maybe try to show thatE
(∑𝑛

𝑖=1 Γ
4
𝑖

) 𝑝 ≤ (𝐶𝑛) 𝑝 for 𝑝 ≤ 𝑐
√
𝑛 andΓ1, . . . ,Γ𝑛

being i.i.d standard Gaussians, using that EΓ4𝑘
𝑖

≤ (𝐶𝑘)2𝑘).
(7) For a convex polygon 𝑃 ⊆ R2 and 𝑡 > 0 and for the unit disc 𝐷 = {𝑥 ∈ R2 ; |𝑥 | <

1}, prove that for any 𝑡 > 0,

Area(𝑃 + 𝑡𝐷) = Area(𝑃) + 𝑡 · Length(𝜕𝑃) + 𝜋𝑡2.

(8) Use the Brunn-Minkowski inequality in order to show that for any convex body
𝐾 ⊆ R𝑛 that is centrally-symmetric (i.e. 𝐾 = −𝐾) and any 𝜃 ∈ 𝑆𝑛−1, 𝑡 ∈ R,

Vol𝑛−1(𝐾 ∩ 𝜃⊥) ≥ Vol𝑛−1(𝐾 ∩ (𝑡𝜃 + 𝜃⊥)).

(9) Let𝐾 ⊆ R𝑛 be a centrally-symmetric convex body (i.e.,𝐾 = −𝐾), and consider
the norm ∥𝑥∥𝐾 = inf {𝜆 ≥ 0 ; 𝑥 ∈ 𝜆𝐾} whose unit ball is 𝐾 . The modulus of
convexity of 𝐾 is defined for 0 < 𝜀 < 1 via

𝛿(𝜀) = inf
{
1 −




𝑥 + 𝑦2





𝐾

; 𝑥, 𝑦 ∈ 𝐾, ∥𝑥 − 𝑦∥𝐾 ≥ 𝜀
}
.
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(a) Verify that if 𝐾 ⊆ R𝑛 is an origin-symmetric ellipsoid, then 𝛿(𝜀) ≥ 𝜀2/8.
(b) Write 𝜇𝐾 for the Lebesgue measure on 𝐾 , normalized to a probability

measure. Prove that for any measurable set 𝐴 ⊆ 𝐾 with 𝜇𝐾 (𝐴) ≥ 1/2 and
any 𝜀 > 0,

𝜇𝐾 (𝐴𝜀) ≥ 1 − 2𝑒−2𝑛𝛿 (𝜀) ,

where 𝐴𝜀 =
{
𝑥 ∈ R𝑛 ; inf𝑦∈𝐴 ∥𝑥 − 𝑦∥𝐾 < 𝜀

}
is the 𝜀-neighborhood of 𝐴

with respect to the norm ∥ · ∥𝐾 .
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Lecture 2

Spherical concentration and the thin shell theorem

In this lecture we discuss applications of the spherical concentration of measure phe-
nomenon in high-dimensions. We begin with the following corollary of Lévy’s iso-
perimetric inequality:

Theorem 2.1 (“spherical concentration of Lipschitz functions”). Let 𝑓 : 𝑆𝑛−1 → R
be an 𝐿-Lipschitz function, i.e., | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿 |𝑥 − 𝑦 | for all 𝑥, 𝑦 ∈ 𝑆𝑛−1. Consider
the average of 𝑓 on the sphere, namely,

𝐸 =

∫
𝑆𝑛−1

𝑓 𝑑𝜎𝑛−1.

Then for any 𝑡 > 0,

𝜎𝑛−1

({
𝑥 ∈ 𝑆𝑛−1 ; | 𝑓 (𝑥) − 𝐸 | ≥ 𝑡

})
≤ 𝐶𝑒−𝑐𝑛(𝑡/𝐿)2

, (2.1)

where 𝐶, 𝑐 > 0 are universal constants.

Theorem 2.1 implies that 1-Lipschitz functions on the high-dimensional sphere
behave, in certain respects, as if they were nearly constant. Apriori, one might expect
such a function to attain values across the entire interval [0, 1], for instance. However,
if we sample five random points from the sphere and evaluate a 1-Lipschitz function
𝑓 at those points, the resulting values will be very close to each other, differing by at
most 𝑂 (1/

√
𝑛).

Proof of Theorem 2.1. We may assume that 𝐿 = 1 (otherwise, replace 𝑓 by 𝑓 /𝐿).
Abbreviate { 𝑓 ≤ 𝑡} = {𝑥 ∈ 𝑆𝑛−1 ; 𝑓 (𝑥) ≤ 𝑡}. Let 𝑀 ≥ 0 be a median of the function
𝑓 , i.e.,

𝜎𝑛−1({ 𝑓 ≤ 𝑀}) ≥ 1/2 and 𝜎𝑛−1({ 𝑓 ≥ 𝑀}) ≥ 1/2.

(not that it matters, but the median of a continuous function is uniquely determined).
Set 𝐴 = { 𝑓 ≤ 𝑀}. Observe that

𝐴𝑡 ⊆ { 𝑓 ≤ 𝑀 + 𝑡},

where 𝐴𝑡 =
{
𝑥 ∈ 𝑆𝑛−1 ; inf𝑦∈𝐴 |𝑥 − 𝑦 | < 𝑡

}
is the 𝑡-neighborhood of 𝐴. Since𝜎𝑛−1(𝐴) ≥

1/2, by the spherical isoperimetric inequality that we proved in the previous lecture,

𝜎𝑛−1({ 𝑓 ≤ 𝑀 + 𝑡}) ≥ 𝜎𝑛−1(𝐴𝑡 ) ≥ 1 − 𝐶𝑒−𝑐𝑡2𝑛. (2.2)

Similarly, since the 𝑡-neighborhood of { 𝑓 ≥ 𝑀} is contained in { 𝑓 ≥ 𝑀 − 𝑡},

𝜎𝑛−1({ 𝑓 ≥ 𝑀 − 𝑡}) ≥ 1 − 𝐶𝑒−𝑐𝑡2𝑛. (2.3)
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From (2.2) and (2.3), for any 𝑡 > 0.

𝜎𝑛−1({| 𝑓 − 𝑀 | ≥ 𝑡}) ≤ 𝐶𝑒−𝑐𝑡2𝑛. (2.4)

The expectation of 𝑓 is rather close to the median. In fact, by (2.4) and Jensen’s inequal-
ity,

|𝐸 − 𝑀 | =
����∫
𝑆𝑛−1

𝑓 𝑑𝜎𝑛−1 − 𝑀
���� ≤ ∫

𝑆𝑛−1
| 𝑓 − 𝑀 | 𝑑𝜎𝑛−1

=

∫ ∞

0
𝜎𝑛−1 ({| 𝑓 − 𝑀 | ≥ 𝑡}) 𝑑𝑡 ≤

∫ ∞

0
𝐶𝑒−𝑐𝑡

2𝑛𝑑𝑡 ≤ 𝐶̃
√
𝑛
.

This implies that for any 𝑡 > 0,

𝜎𝑛−1({| 𝑓 − 𝐸 | ≥ 𝑡}) ≤ 𝐶𝑒−𝑐𝑡
2𝑛. (2.5)

Indeed, if 𝑡 ≤ 1/
√
𝑛 then the right-hand side of (2.5) can be assumed at least 1, while

if 𝑡 ≥ 1/
√
𝑛, then we may use our bound for |𝐸 − 𝑀 | and note that

{𝑥 ∈ 𝑆𝑛−1 ; | 𝑓 (𝑥) − 𝐸 | ≥ 𝑡} ⊆ {𝑥 ∈ 𝑆𝑛−1 ; | 𝑓 (𝑥) − 𝑀 | ≥ 𝐶𝑡}.

Now (2.5) follows from (2.4).

As we see from the proof of Theorem 2.1, we may replace the expectation 𝐸 in
(2.1) by the median 𝑀 , as well as by other “central values” of 𝑓 , like the 𝐿2-norm of
𝑓 when it’s non-negative; see the exercise below.

Remark 2.2. Concentration effects go beyond Lipschitz functions, and that it usually
suffices to assume that the function 𝑓 is “Lipschitz on average”. For example, the
Poincaré inequality on the sphere states that if 𝑓 : 𝑆𝑛−1 is a smooth function (or just
locally Lipschitz) and

∫
𝑆𝑛−1 𝑓 𝑑𝜎𝑛−1 = 0, then∫
𝑆𝑛−1

𝑓 2𝑑𝜎𝑛−1 ≤ 1
𝑛 − 1

∫
𝑆𝑛−1

|∇ 𝑓 |2𝑑𝜎𝑛−1. (2.6)

Equality holds in (2.6) if and only if 𝑓 (𝑥) = 𝑥 · 𝜃 for some 𝜃 ∈ R𝑛. This is proven
by analyzing spherical harmonics and the spherical Laplacian, see e.g. Müller [48].
There are also 𝐿 𝑝-versions of the Poincaré inequality (2.6) where 𝑓 2 and |∇ 𝑓 |2 are
replaced by | 𝑓 |𝑝 and |∇ 𝑓 |𝑝, respectively. A strong and useful inequality is the log-
Sobolev inequality on the sphere, see e.g. Bakry, Gentil and Ledoux [1]. As we will
see later on, the Poincaré inequality (2.6) implies sub-exponential concentration of
Lipschitz functions, which is considerably weaker than the sub-Gaussian concentration
of Theorem 2.1.
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Our main application of the spherical concentration of measure phenomenon is
a version of the “thin-shell theorem” of Sudakov [53] and Diaconis–Freedman [17].
This theorem offers additional insight into why the Gaussian distribution arises in the
central limit theorem.

Let 𝑋 = (𝑋1, . . . , 𝑋𝑛) be a random vector in R𝑛 with E|𝑋 |2 <∞. We say that 𝑋 is
isotropic or normalized if

E𝑋𝑖 = 0, E𝑋𝑖𝑋 𝑗 = 𝛿𝑖, 𝑗 ∀𝑖, 𝑗 = 1, . . . , 𝑛,

or in short if
E𝑋 = 0 and Cov(𝑋) := E𝑋 ⊗ 𝑋 = Id,

where 𝑥 ⊗ 𝑥 = (𝑥𝑖𝑥 𝑗)𝑖, 𝑗=1,...,𝑛 ∈ R𝑛×𝑛 for 𝑥 ∈ R𝑛. Equivalently, a random vector 𝑋 is
isotropic if for any 𝜃 ∈ 𝑆𝑛−1, the marginal random variable ⟨𝑋, 𝜃⟩ has mean zero and
variance one.

Any random vector 𝑋 satisfying mild conditions can be made isotropic by applying
to it an appropriate linear-affine transformation (exercise!). Thus, isotropicity is just
a matter of normalization of the random vector; we need to center it and then stretch
or shrink it linearly in some orthogonal directions in order too make it balanced in all
directions in terms of variance of marginal distributions.

Theorem 2.3 (Thin-shell theorem). Let 𝑋 be an isotropic random vector inR𝑛, and let
𝑍 be a real-valued, standard Gaussian random variable. Assume that for some 𝜀 ≥ 0,

E
(
|𝑋 |
√
𝑛
− 1

)2
≤ 𝜀2. (2.7)

Then there exists a subset A ⊆ 𝑆𝑛−1 with 𝜎𝑛−1(A) ≥ 1 −𝐶 exp(−𝑐
√
𝑛), such that for

any 𝜃 ∈ A and 𝑡 ∈ R,

|P(𝑋 · 𝜃 ≤ 𝑡) − P(𝑍 ≤ 𝑡) | ≤ 𝐶
(
𝜀1/2 + 1

𝑛1/8

)
, (2.8)

where 𝐶, 𝑐 > 0 are universal constants.

The exponents 1/2 and 1/8 on the right-hand side of (2.8) are non-optimal. Bobkov,
Chistyakov and Götze [10,11] used the Fourier transform as well as other techniques,
and essentially obtained 𝐶𝜀2 log 𝑛 on the right-hand side of (2.8), with a slightly dif-
ferent definition of 𝜀, and with a slightly different probabilistic estimate on 𝜃.

What is the meaning of condition (2.7)? By the Chebyshev–Markov inequality,
this condition implies that

P
(
1 −

√
𝜀 ≤ |𝑋 |

√
𝑛
≤ 1 +

√
𝜀

)
≥ 1 − 𝜀.
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Thus, when 𝜀≪ 1, condition (2.7) implies that the bulk of the mass of 𝑋 is concentrated
in a thin spherical shell.

Theorem 2.3 tells us that in order to have many approximately Gaussian marginals,
it suffices to verify that most of the mass of the random vector 𝑋 is contained in a thin
spherical shell whose width is much smaller than its radius. The fact that the radius
must be

√
𝑛 is dictated by the isotropic normalization of 𝑋 . From the proof of Theorem

2.3 one can see that the thin-shell condition (2.7) is also necessary for the Gaussian
approximation phenomenon of the majority of the marginals.

Examples.

(1) Consider the case where 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑋1, . . . , 𝑋𝑛 are independent
random variables with, say, E𝑋2

𝑖
= 1 and E𝑋4

𝑖
≤ 100 for all 𝑖. The thin-shell

condition (2.7) holds true with a rather small 𝜀. Indeed, we may compute that

E
(
|𝑋 |
√
𝑛
− 1

)2
≤ E

(
|𝑋 |2
𝑛

− 1
)2

= 𝑉𝑎𝑟

(
|𝑋 |2
𝑛

)
=

𝑛∑︁
𝑖=1

𝑉𝑎𝑟

(
𝑋2
𝑖

𝑛

)
=

1
𝑛2

𝑛∑︁
𝑖=1

[
E𝑋4

𝑖 − 1
]
≤ 100

𝑛
.

Thus the standard deviation of |𝑋 |/
√
𝑛 is at most 10/

√
𝑛, and (2.7) holds true

with 𝜀 =𝑂 (𝑛−1/2), i.e., the width of the thin spherical shell that contains most
of the mass of 𝑋 is only 𝑂 (1/

√
𝑛) times its radius. Theorem 2.3 thus implies

that many of the marginals of 𝑋 are approximately Gaussian, in accordance
with the classical central limit theorem.

(2) Consider a regular simplex circumscribed by the sphere
√
𝑛𝑆𝑛−1. Let 𝑋 be a

discrete random vector in R𝑛, uniformly distributed on the 𝑛 + 1 vertices of
this simplex. Note that 𝑋 is isotropic, and that the mass of 𝑋 is concentrated
in a thin-spherical shell of width 𝜀 = 0. Thus, by Theorem 2.3, most of the
marginals of 𝑋 are approximately Gaussian.

(3) Tomorrow we should discuss a recent proof that the uniform distribution on
any convex set in R𝑛, when isotropic, satisfies the requirements of Theorem
2.3 with 𝜀 = 𝐶/

√
𝑛, see Klartag and Lehec [40].

(4) A non-example: Let𝑌 be a random vector distributed uniformly on the sphere
𝑆𝑛−1, and let 𝜏 be a symmetric Bernoulli random variable, independent of 𝑌 ,
i.e., P(𝜏 = 0) = P(𝜏 = 1) = 1/2. Define

𝑋 =


√︁
𝑛
2 𝑌, if 𝜏 = 0,√︃
3𝑛
2 𝑌, if 𝜏 = 1.
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Observe that 𝑋 is an isotropic random vector that does not satisfy a good
thin-shell estimate, since it assigns mass 1/2 to each of two spheres of very
different radii. Consequently, the marginals ⟨𝑋, 𝜃⟩ are all far from Gaussian:
each of the two spheres contributes an approximately Gaussian component to
the marginal, but their variances are very different. Hence the density of the
marginal 𝑋 · 𝜃 is the average of two Gaussian densities with very different
variances, i.e., it is approximately

1
2

[
1
√
𝜋
𝑒−𝑡

2 + 1
√

3𝜋
𝑒−𝑡

2/3
]
,

which is not close to Gaussian.

The proof of Theorem 2.3 has the following structure: First, we show that a certain
observable, defined as a function on the sphere, is concentrated around some unknown
value. Then, in order to identify this value, analyze the expectation of the observable.
Our observables would be Lipschitz approximations for the functions

𝑆𝑛−1 ∋ 𝜃 ↦→ P (𝑋 · 𝜃 ≤ 𝑡) (2.9)

for 𝑡 ∈ R. The function in (2.9) is not necessarily continuous in general, but as we will
see it admits good Lipschitz approximations. We begin the proof of Theorem 2.3 with
the following:

Lemma 2.4. Let 𝑋 and 𝜀 be as in Theorem 2.3, and let𝑌 ∼𝑈𝑛𝑖 𝑓 (𝑆𝑛−1). Let 𝑓 : R→R
be an 𝐿-Lipschitz function. Then there exists a subset Θ ⊆ 𝑆𝑛−1 with 𝜎𝑛−1(Θ) ≥ 1 −
𝐶 exp(−𝑐

√
𝑛) such that for any 𝜃 ∈ Θ,��E 𝑓 (𝑋 · 𝜃) − E 𝑓 (

√
𝑛𝑌1)

�� ≤ 𝐶𝐿 (
1
𝑛1/4 + 𝜀

)
. (2.10)

Proof. For simplicity assume that 𝑋 has no atom at the origin; it is an exercise to
go over the proof below and eliminate this requirement. We may assume that 𝑌 is
independent of 𝑋 , since this assumption does not change the values of the various
expressions in (2.10). For 𝜃 ∈ 𝑆𝑛−1 denote

𝐹 (𝜃) = E 𝑓 (𝑋 · 𝜃).

Let us observe that 𝐹 is an 𝐿-Lipschitz function on the sphere. Indeed, for any 𝜃1, 𝜃2 ∈
𝑆𝑛−1,

|𝐹 (𝜃1) − 𝐹 (𝜃2) | ≤ E | 𝑓 (𝑋 · 𝜃1) − 𝑓 (𝑋 · 𝜃2) | ≤ 𝐿E |𝑋 · (𝜃1 − 𝜃2) |

≤ 𝐿
√︁
E|𝑋 · (𝜃1 − 𝜃2) |2 = 𝐿 |𝜃1 − 𝜃2 |,



26

since 𝑋 is isotropic, and hence the random variable 𝑋 · (𝜃1 − 𝜃2) has variance |𝜃1 −
𝜃2 |2. The function 𝐹 is 𝐿-Lipschitz, hence it deviates very little from its average on the
sphere. In particular, by using Theorem 2.1 with 𝑡 = 𝐿/𝑛1/4, we deduce the existence
of a subset Θ ⊆ 𝑆𝑛−1 with 𝜎𝑛−1(Θ) ≥ 1 − 𝐶 exp(−𝑐

√
𝑛) such that

∀𝜃 ∈ Θ,

����𝐹 (𝜃) −
∫
𝑆𝑛−1

𝐹𝑑𝜎𝑛−1

���� ≤ 𝐿

𝑛1/4 . (2.11)

The next step is to estimate the average of 𝐹 on the sphere, and connect it with
E 𝑓 (

√
𝑛𝑌1). To this end, we observe that the two random variables

⟨𝑋/|𝑋 |, 𝑌⟩ and 𝑌1 (2.12)

have the same distribution, by the rotational-invariance of the uniform measure on the
sphere. Indeed, 𝑌1 and ⟨𝑌, 𝜃⟩ have the same distribution for any fixed 𝜃 ∈ 𝑆𝑛−1, and
the same holds when we replace the fixed 𝜃 ∈ 𝑆𝑛−1 by any random vector supported
in 𝑆𝑛−1 that is independent of 𝑌 .

Moreover, the random variable ⟨𝑋/|𝑋 |,𝑌⟩ is independent of 𝑋 . Thus, since the two
random variables in (2.12) are equidistributed, the same holds when we multiply each
of them by |𝑋 |. It follows that the random variables ⟨𝑋,𝑌⟩ and |𝑋 |𝑌1 are equidistrib-
uted. Therefore, ∫

𝑆𝑛−1
𝐹𝑑𝜎𝑛−1 = E𝐹 (𝑌 ) = E 𝑓 (𝑋 · 𝑌 ) = E 𝑓 ( |𝑋 |𝑌1). (2.13)

Our main assumption (2.7) implies that the random variable |𝑋 | is typically very close
to

√
𝑛. Thus,��E 𝑓 ( |𝑋 |𝑌1) − E 𝑓 (

√
𝑛𝑌1)

�� ≤ 𝐿 · E
�� ( |𝑋 | − √

𝑛
)
𝑌1

��
≤ 𝐿

√︃
E𝑛𝑌2

1 ·
√︃
E

(
|𝑋 |/

√
𝑛 − 1

)2 ≤ 𝐿𝜀,

as E𝑌2
1 = 1/𝑛. Combining the last inequality with (2.11) and (2.13), the proof is com-

pelte.

Recall from the first lecture that the density of the random variable
√
𝑛𝑌1 is

𝐶𝑛

(
1 − 𝑡2

𝑛

) 𝑛−3
2

,

where 𝐶𝑛 = 1/
√

2𝜋 + 𝑂 (1/𝑛), and that if 𝑍 is a standard Gaussian random variable
then for all 𝑡 ∈ R ��P (√

𝑛𝑌1 ≤ 𝑡
)
− P (𝑍 ≤ 𝑡)

�� ≤ 𝐶

𝑛
. (2.14)
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Proof of Theorem 2.3. Set 𝛿 = max{
√
𝜀, 𝑛−1/8}. For 𝑡 ∈ R consider the function

𝐼𝑡 (𝑥) =


1 𝑥 < 𝑡

1 − (𝑥 − 𝑡)/𝛿 𝑥 ∈ [𝑡, 𝑡 + 𝛿]
0 𝑥 > 𝑡 + 𝛿

Then 𝐼𝑡 is a (1/𝛿)-Lipschitz function, and

P(𝑋 · 𝜃 ≤ 𝑡) ≤ E𝐼𝑡 (𝑋 · 𝜃) ≤ P(𝑋 · 𝜃 ≤ 𝑡 + 𝛿). (2.15)

From Lemma 2.4, for any 𝑡 ∈ R there exists A𝑡 ⊆ 𝑆𝑛−1 with

𝜎𝑛−1(A𝑡 ) ≥ 1 − 𝐶𝑒−𝑐
√
𝑛 (2.16)

such that for any 𝜃 ∈ A𝑡 ,��E𝐼𝑡 (𝑋 · 𝜃) − E𝐼𝑡 (
√
𝑛𝑌1)

�� ≤ 𝐶 · 1
𝛿
·
(
𝑛−1/4 + 𝜀

)
≤ 𝐶̃

√
𝛿. (2.17)

Our goal is to leverage (2.17) and show that there exists a subset A ⊆ 𝑆𝑛−1 of large
measure such that for all 𝜃 ∈ A and 𝑡 ∈ R,

|P(𝑋 · 𝜃 ≤ 𝑡) − P(𝑍 ≤ 𝑡) | ≤ 𝐶
√
𝛿. (2.18)

Step 1. We would like to replace
√
𝑛𝑌1 in (2.17) by 𝑍 . By the definition of 𝐼𝑡 and

by (2.14),

P(𝑍 ≤ 𝑡) − 𝐶/𝑛 ≤ P
(√
𝑛𝑌1 ≤ 𝑡

)
≤ E𝐼𝑡 (

√
𝑛𝑌1)

≤ P(
√
𝑛𝑌1 ≤ 𝑡 + 𝛿) ≤ P(𝑍 ≤ 𝑡 + 𝛿) + 𝐶̃/𝑛. (2.19)

Moreover,

|P(𝑍 ≤ 𝑡 + 𝛿) − P(𝑍 ≤ 𝑡) | =
∫ 𝑡+𝛿

𝑡

1
√

2𝜋
𝑒−𝑥

2/2𝑑𝑥 ≤ 1
√

2𝜋
𝛿 ≤ 𝛿.

Thus by (2.19),

E𝐼𝑡 (
√
𝑛𝑌1) = P(𝑍 ≤ 𝑡) +𝑂

(
𝛿 + 1

𝑛

)
= P(𝑍 ≤ 𝑡) +𝑂 (𝛿) .

Consequently, from (2.17), for any 𝜃 ∈ A𝑡 ,

|E𝐼𝑡 (𝑋 · 𝜃) − P(𝑍 ≤ 𝑡) | ≤ 𝐶
√
𝛿. (2.20)

Step 2. We would need to take care simultaneously of all values of 𝑡. To this end,
we write

Φ(𝑡) = P(𝑍 ≤ 𝑡) =
∫ 𝑡

−∞

𝑒−𝑥
2/2

√
2𝜋

𝑑𝑥.
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Consider the Gaussian 𝛿-quantiles

𝑡𝑖 = Φ−1(𝑖 · 𝛿) for 𝑖 = 1, . . . , 𝑘 := ⌈1/𝛿⌉⌋ − 1,

so 𝑘 ≤ 𝑛1/8. Then

P(𝑍 ≤ 𝑡 𝑗) = 𝑗𝛿 for 𝑗 = 1, . . . , 𝑘 .

Set also 𝑡0 = −∞ and 𝑡𝑘+1 = +∞. Consider the event

A =

𝑘⋂
𝑖=1

A𝑡𝑖 ⊆ 𝑆𝑛−1

which by (2.16) satisfies

𝜎𝑛−1(A) ≥ 1 − 𝑘 · 𝐶𝑒−𝑐
√
𝑛 ≥ 1 − 𝐶𝑛1/8𝑒−𝑐

√
𝑛 ≥ 1 − 𝐶̃𝑒−𝑐̃

√
𝑛.

We are now in a position to prove (2.18). Pick 𝜃 ∈ A and 𝑡 ∈ R. There exists 𝑗 = 0, . . . , 𝑘
such that 𝑡 𝑗 ≤ 𝑡 ≤ 𝑡 𝑗+1. Thus, by (2.20),

P(𝑋 · 𝜃 ≤ 𝑡) ≤ P(𝑋 · 𝜃 ≤ 𝑡 𝑗+1) ≤ E𝐼𝑡 𝑗+1 (𝑋 · 𝜃) ≤ P(𝑍 ≤ 𝑡 𝑗+1) + 𝐶
√
𝛿

≤ P(𝑍 ≤ 𝑡) + 𝐶
√
𝛿 + 𝛿 = P(𝑍 ≤ 𝑡) +𝑂 (

√
𝛿),

which proves one half of the desired inequality (2.18). For the other half, let 𝑖 = 0, . . . , 𝑘
be such that 𝑡𝑖 ≤ 𝑡 − 𝛿 ≤ 𝑡𝑖+1. Thus,

P(𝑋 · 𝜃 ≤ 𝑡) ≥ P(𝑋 · 𝜃 ≤ 𝑡𝑖 + 𝛿) ≥ E𝐼𝑡𝑖 (𝑋 · 𝜃) ≥ P(𝑍 ≤ 𝑡𝑖) − 𝐶
√
𝛿

≥ P(𝑍 ≤ 𝑡) − 𝐶̃
√
𝛿,

completing the proof of (2.18).

Exercises.

(1) Let 𝑋 be a random vector in R𝑛 with E|𝑋 |2 < ∞ that is not supported by
a hyperplane. Prove that there exist a vector 𝑏 ∈ R𝑛 and a positive-definite
matrix 𝐴 such that 𝐴(𝑋) + 𝑏 is isotropic.

(2) Eliminate the requirement that P(𝑋 = 0) = 0 from the proof of Lemma 2.4.
(3) Let (Ω,P) be a probability space, and let 𝑓1, . . . , 𝑓𝑛 ∈ 𝐿2(Ω) be an orthonormal

system such that
∑𝑛
𝑖=1 𝑓

2
𝑖
≡ 1, Prove that there exist coefficients (𝜃1, . . . , 𝜃𝑛) ∈

𝑆𝑛−1 such that 𝑓 =
∑𝑛
𝑖=1 𝜃𝑖 𝑓𝑖 satisfies����P ( 𝑓 ≤ 𝑡) − 1

√
2𝜋

∫ 𝑡

−∞
𝑒−𝑠

2/2𝑑𝑠

���� ≤ 𝐶

𝑛1/8 (𝑡 ∈ R)
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where 𝑚 is the Lebesgue measure. (We remark that there are many non-trivial
examples of such orthonormal systems. For instance, any orthonormal basis
of the space of spherical harmonics of a certain degree and dimension.)

(4) For a non-negative function 𝑓 : 𝑆𝑛−1 → R, replace 𝐸 in Theorem 2.1 by√︃∫
𝑆𝑛−1 𝑓

2𝑑𝜎𝑛−1.
(jargon: any 𝑎 with |𝑎 − 𝐸 | ≲ 𝐿/

√
𝑛 may be called a “central value” of 𝑓 ).
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Lecture 3

Log-concavity and the Bochner method

Which probability measures in high dimensions enjoy concentration phenomena?
With respect to which probability measures on R𝑛 Lipschitz functions are concen-
trated near their expectation? For which measures on R𝑛 most of the mass is located
near “any equator”, and perhaps even “non-linear equators” which are hypersurfaces
partitioning space into two parts of equal mass?

Yesterday we considered the case of the uniform measure on the sphere unit 𝑆𝑛−1,
as well as the closely related uniform measure on the Euclidean unit ball 𝐵𝑛. Further-
more, we know that when

𝑋 = (𝑋1, . . . , 𝑋𝑛) ∼ Unif(
√
𝑛𝑆𝑛−1)

and 𝑛 is very large while 𝑘 = 𝑜(𝑛), the random variables

𝑋1, . . . , 𝑋𝑘 ∈ R𝑘

are approximately independent standard Gaussian random variables in the total vari-
ation distance (see Diaconis and Freedman [18, Section 6] for this statement and its
history). Thus the standard Gaussian probability measure on R𝑛 enjoys strong con-
centration properties, which it inherits from the high-dimensional sphere (see exercise
below for a better proof of Gaussian concentration of Lipschitz functions).

There are concentration inequalities available for product measures (i.e., independ-
ent random variables), in particular for the boolean cube {−1, 1}𝑛, and for random
variables with weak dependence properties.

Here we study a class of probability measures in R𝑛 whose concentration prop-
erties were understood relatively recently, which are high-dimensional measures with
convexity properties, generalizing uniform distributions on convex sets. In particular,
we focus on log-concave probability measures.

We begin with the Prékopa-Leindler inequality, which is a functional version of
the Brunn-Minkowski inequality.

Theorem 3.1 (Prékopa-Leindler). Suppose that 𝑓 , 𝑔, ℎ : R𝑛 → [0,∞) are measurable
functions and 0 < 𝜆 < 1 are such that for any 𝑥, 𝑦 ∈ R𝑛,

ℎ ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑓 (𝑥)1−𝜆𝑔(𝑦)𝜆. (3.1)

Then, ∫
R𝑛

ℎ ≥
(∫

R𝑛

𝑓

)1−𝜆 (∫
R𝑛

𝑔

)𝜆
, (3.2)
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whenever the integrals on the right-hand side converge.

Remarks.
(1) In the case where 𝐴, 𝐵 ⊆ R𝑛 have finite volume, by setting

𝑓 = 1𝐴, 𝑔 = 1𝐵, ℎ = 1(1−𝜆)𝐴+𝜆𝐵

we recover the Brunn-Minkowski inequality in its multiplicative form. Indeed,
𝑓 , 𝑔, ℎ satisfy the requirements of Theorem 3.1, and hence by its conclusion

𝑉𝑜𝑙𝑛 ((1 − 𝜆)𝐴 + 𝜆𝐵) =
∫

ℎ

≥
(∫

𝑓

)1−𝜆 (∫
𝑔

)𝜆
= Vol𝑛 (𝐴)1−𝜆Vol𝑛 (𝐵)𝜆.

There are also several ways to deduce the Prekopa-Leindler inequality from the
Brunn-Minkowski inequality. For example, one may consider convex bodies
in higher dimensions whose marginal distributions yield the given functions,
and apply Brunn-Minkowski (see, e.g., [35]).

(2) The Prékopa-Leindler inequality may be viewed as a certain converse to Hölder’s
inequality. Indeed, the Hölder inequality implies that∫

R𝑛

𝑓 1−𝜆𝑔𝜆 ≤
(∫

R𝑛

𝑓

)1−𝜆 (∫
R𝑛

𝑔

)𝜆
while the Prékopa-Leindler inequality yields∫

R𝑛

[
sup

𝑥=(1−𝜆)𝑦+𝜆𝑧
𝑓 (𝑦)1−𝜆𝑔(𝑧)𝜆

]
𝑑𝑥 ≥

(∫
R𝑛

𝑓

)1−𝜆 (∫
R𝑛

𝑔

)𝜆
.

Proof of Theorem 3.1 for 𝑛 = 1. Consider first the case where 𝑓 and 𝑔 are bounded
functions. If 𝑓 or 𝑔 vanish almost everywhere, then there is nothing to prove. Hence
we may assume that ∥ 𝑓 ∥∞ and ∥𝑔∥∞ are positive numbers. In fact, by homogeneity
we may assume that

∥ 𝑓 ∥∞ = ∥𝑔∥∞ = 1, (3.3)

since otherwise we may replace 𝑓 by 𝑓 /∥ 𝑓 ∥∞, replace 𝑔 by 𝑔/∥𝑔∥∞ and replace ℎ
by ℎ/

(
∥ 𝑓 ∥1−𝜆

∞ ∥𝑔∥𝜆∞
)
, without affecting the validity of neither the assumptions nor the

conclusions of the theorem.

Recall that we abbreviate {ℎ > 𝑡} = {𝑥 ∈ R ; ℎ(𝑥) > 𝑡}. Observe that condition
(3.1) imply that for all 𝑡 > 0,

{ℎ > 𝑡} ⊇ (1 − 𝜆){ 𝑓 > 𝑡} + 𝜆{𝑔 > 𝑡}. (3.4)
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If 0 < 𝑡 < 1 then both sets on the right-hand side of (3.4) are non-empty. Hence, by the
one-dimensional Brunn-Minkowski inequality (which is a triviality), for 0 < 𝑡 < 1,

𝑚 ({ℎ > 𝑡}) ≥ (1 − 𝜆)𝑚 ({ 𝑓 > 𝑡}) + 𝜆𝑚 ({𝑔 > 𝑡}) ,

where 𝑚 is the Lebesgue measure on the real line. Therefore,∫
R
ℎ =

∫ ∞

0
𝑚({ℎ > 𝑡})𝑑𝑡 ≥

∫ 1

0
𝑚({ℎ > 𝑡})𝑑𝑡

≥ (1 − 𝜆)
∫ 1

0
𝑚({ 𝑓 > 𝑡})𝑑𝑡 + 𝜆

∫ 1

0
𝑚({𝑔 > 𝑡})𝑑𝑡

= (1 − 𝜆)
∫
R
𝑓 + 𝜆

∫
R
𝑔 ≥

(∫
R
𝑓

)1−𝜆 (∫
R
𝑔

)𝜆
.

This concludes the proof in the case where 𝑓 and 𝑔 are bounded. For the general
case, for 𝑀 > 0 we replace 𝑓 by min{ 𝑓 , 𝑀}, we replace 𝑔 by min{𝑔, 𝑀} and ℎ by
min{𝑔, 𝑀}. Such a truncation still satisfies the requirements of the Prékopa-Leindler
inequality (with the same function ℎ). Hence, by the case of the inequality that was
already proven,∫

R
ℎ ≥

(∫
R

min{ 𝑓 , 𝑀}
)1−𝜆 (∫

R
min{𝑔, 𝑀}

)𝜆
𝑀→∞−−−−−→

(∫
R
𝑓

)1−𝜆 (∫
R
𝑔

)𝜆
,

where we used the monotone convergence theorem in the last passage.

Proof of Theorem 3.1 for 𝑛 ≥ 2. By induction on 𝑛. We use 𝑥 = (𝑦, 𝑡) ∈ R𝑛−1 × R as
coordinates in R𝑛 and set

𝐹 (𝑦) =
∫ ∞

−∞
𝑓 (𝑦, 𝑡) 𝑑𝑡 =

∫ ∞

−∞
𝑓𝑦 (𝑡) 𝑑𝑡,

𝐺 (𝑦) =
∫ ∞

−∞
𝑔(𝑦, 𝑡) 𝑑𝑡 =

∫ ∞

−∞
𝑔𝑦 (𝑡) 𝑑𝑡,

𝐻 (𝑦) =
∫ ∞

−∞
ℎ(𝑦, 𝑡) 𝑑𝑡 =

∫ ∞

−∞
ℎ𝑦 (𝑡) 𝑑𝑡.

We claim that if 𝑦 = (1 − 𝜆)𝑦1 + 𝜆𝑦2, for 𝑦1, 𝑦2 ∈ R𝑛, then,

𝐻 (𝑦) ≥ 𝐹 (𝑦1)1−𝜆𝐺 (𝑦2)𝜆. (3.5)

Indeed, if 𝑡 = (1 − 𝜆)𝑡1 + 𝜆𝑡2 for 𝑡1, 𝑡2 ∈ R, then

ℎ𝑦 (𝑡) ≥ 𝑓𝑦1 (𝑡1)1−𝜆 𝑓𝑦2 (𝑡2)𝜆.
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Hence (3.5) follows by the one-dimensional Prékopa-Leindler inequality. Thanks to
(3.5) and the induction hypothesis, we may apply the (𝑛 − 1)-dimensional Prékopa-
Leindler inequality for the functions 𝐹, 𝐺 and 𝐻 and conclude (3.2).

Definition 3.2. A function 𝜌 : R𝑛 → [0,∞) is log-concave if for all 𝑥, 𝑦 ∈ R𝑛 and
0 < 𝜆 < 1,

𝜌 ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝜌(𝑥)1−𝜆𝜌(𝑦)𝜆,

i.e., if the set Ω = {𝜌 > 0} is convex and − log 𝜌 is a convex function on Ω.

We say that a probability measure (or a random vector) in R𝑛 is log-concave if it
is supported in an affine subspace of R𝑛 with a log-concave density in this subspace.
Usually this affine subspace is R𝑛 itself.

For example, any Gaussian measure in R𝑛 is log-concave, because its density rel-
ative to the affine subspace where it is supported is of the form

𝑐𝐴 exp(−⟨𝐴(𝑥 − 𝑏), (𝑥 − 𝑏)⟩)

for a symmetric, positive-definite operator 𝐴, a number 𝐶𝐴 > 0 and a vector 𝑏 ∈ R𝑛.
The quadratic function 𝑥 → ⟨𝐴(𝑥 − 𝑏), (𝑥 − 𝑏)⟩ is clearly convex, and hence the
Gaussian measure is log-concave. The uniform probability measure on any bounded
convex set, is log-concave as well. On the real line, it is very common to encounter
log-concave distributions; pretty much, a typical distribution that decays exponen-
tially or faster at infinity is often log-concave. Exponential decay at infinity is indeed
a necessary condition for log-concavity. Thus the exponential distribution on [0,∞)
is log-concave, as well as beta and gamma distributions with certain parameters and
the double-exponential probability density

exp(−2|𝑥 |) (𝑥 ∈ R).

Operations that preserve log-concavity include:

(1) Linear images. If 𝑋 is a log-concave random vector in R𝑛, then for any sub-
space 𝐸 ⊆ R𝑛 also

𝑃𝑟𝑜 𝑗𝐸 (𝑋)

is log-concave, by Prekopa-Leindler. It follows that for any linear (or affine)
map 𝑇 : R𝑛 → R𝑚, the random vector 𝑇 (𝑋) is log-concave.

(2) Pointwise product. If 𝑓1, . . . , 𝑓𝑁 are log-concave functions, then so is the
product

∏𝑁
𝑖=1 𝑓𝑖 . It follows that if a polynomial 𝑃 has only real roots and is
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positive on an interval 𝐼, then its restriction to 𝐼 is log-concave. Indeed,

𝑃(𝑥) = 𝑐 · 1𝐼 (𝑥) ·
𝑁∏
𝑖=1

(𝑥 − 𝜆𝑖)

for some interval 𝐼 ⊆ R, a real number 𝑐 ∈ R and 𝜆1, . . . , 𝜆𝑁 ∈ R \ 𝐼. Since
|𝑥 − 𝜆𝑖 | is log-concave on 𝐼, the same applies for 𝑃.

(3) Convolution. If 𝑓 , 𝑔 : R𝑛 → [0,∞) are log-concave, then 𝑓 (𝑦)𝑔(𝑥 − 𝑦) is log-
concave on R𝑛 ×R𝑛, and consequently the same applies for its marginal 𝑓 ∗ 𝑔.

(4) Weak limits. It is an exercise to deduce from the Prékopa-Leindler inequality
that if (𝜇𝑁 )𝑁≥1 is a sequence of log-concave concave probability measures
converging weakly to a probability measure 𝜇, then 𝜇 is also log-concave. This
is not an obvious fact; think of the case where 𝜇𝑁 tend to a measure supported
on a lower dimensional subspace.

Proposition 3.3 (“How to think on 1D log-concave random variables”). Let 𝑋 ∈ R be
an isotropic, log-concave random variable, i.e., E𝑋 = 0 and 𝑉𝑎𝑟 (𝑋) = 1. Write 𝜌 for
the log-concave density of 𝑋 . Then for all 𝑥 ∈ R,

𝑐′1{ |𝑥 | ≤𝑐′′ } ≤ 𝜌(𝑥) ≤ 𝐶𝑒−𝑐 |𝑥 | ,

where 𝑐, 𝑐′, 𝑐′′, 𝐶 > 0 are universal constants.

Sketch of proof. For the upper bound, if 𝜌(𝑏) < 𝜌(𝑎)/2 for some 𝑎 < 𝑏, then 𝜌 decays
exponentially and in fact 𝜌(𝑥) ≤ 𝜌(𝑏)2−𝑥/(𝑏−𝑎) for all 𝑥 > 𝑏. As for the lower bound,
it is enough to show that 𝜌(𝑥) > 𝑐′ for some 𝑥 > 𝑐′′ and for some 𝑥 < −𝑐′′. It is an
exercise to filling in the details.

Corollary 3.4 (“reverse Hölder inequalities”, Berwald [7,12]). For any isotropic, log-
concave, real-valued random variable 𝑋 and for any 𝑝 > −1,

𝑐 · min{𝑝 + 1, 1} ≤ ∥𝑋 ∥ 𝑝 = (E|𝑋 |𝑝)1/𝑝 ≤ 𝐶 (𝑝 + 2), (3.6)

where 𝑐, 𝐶 > 0 are universal constants.

The case 𝑝 = 0 in (3.6) is interpreted by continuity, i.e.,

∥𝑋 ∥0 = exp(E log |𝑋 |).

This is not a norm, yet a nice feature is its multiplicativity: for any random variables
𝑋 and 𝑌 , possibly dependent,

∥𝑋𝑌 ∥0 = ∥𝑋 ∥0∥𝑌 ∥0.
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Proof of Corollary 3.4. Begin with the inequality on the right-hand side. By the mono-
tonicity of 𝑝 ↦→ ∥𝑋 ∥ 𝑝, it is enough to look at 𝑝 > 0. In this case,

∥𝑋 ∥ 𝑝𝑝 =

∫ ∞

−∞
|𝑡 |𝑝𝜌(𝑡)𝑑𝑡 ≤ 𝐶

∫ ∞

−∞
|𝑡 |𝑝𝑒−𝑐 |𝑡 |𝑑𝑡 = 2𝐶

𝑐𝑝+1 Γ(𝑝 + 1) ≤ (𝐶̃ 𝑝) 𝑝,

where we used the fact that for integer 𝑝, we have Γ(𝑝 + 1) = 𝑝! ≤ 𝑝𝑝. For the lower
bound, by monotonicity it suffices to look at 𝑝 < 0. Setting 𝑞 = −𝑝 ∈ (0, 1) we have

E
1

|𝑋 |𝑞 ≤ 𝐶
∫ ∞

−∞

1
|𝑡 |𝑞 𝑒

−𝑐 |𝑡 |𝑑𝑡 ≤ 𝐶′

1 − 𝑞
and hence

∥𝑋 ∥ 𝑝 =

(
E

1
|𝑋 |𝑞

)−1/𝑞
≥ (𝐶′ (1 − 𝑞))1/𝑞 ≥ 𝐶̃ (1 − 𝑞).

For instance, we learn from Corollary 3.4 that when 𝑋 is a centered, log-concave
random vector in R𝑛, then

E⟨𝑋, 𝜃⟩4 ≤ 𝐶
(
E⟨𝑋, 𝜃⟩2

)2
, (3.7)

for a universal constant 𝐶 > 0 (in fact, 𝐶 = 9 is optimal here, see Eitan [19]). Indeed,
if 𝜎 = (E⟨𝑋, 𝜃⟩2)1/2 then ⟨𝑋, 𝜃⟩/𝜎 is an isotropic, log-concave random variable, and
(3.7) follows from Corollary 3.4.

Proposition 3.5 (“Reverse Hölder inequalities for polynomials”). Let 𝑋 be a real-
valued, log-concave random variable, and let 𝑓 : R → R be a polynomial of degree
at most 𝑑. Then for any 0 < 𝑝 ≤ 𝑞,

∥ 𝑓 (𝑋)∥𝑞 ≤ 𝐶𝑞,𝑑 · ∥ 𝑓 (𝑋)∥ 𝑝,

for some constant 𝐶𝑞,𝑑 depending only on 𝑞 and 𝑑.

Proof. Following Bobkov [9], we may assume that 𝑓 is a monic polynomial in one
real variable, hence

𝑓 (𝑋) =
𝑑∏
𝑖=1

(𝑋 − 𝑧𝑖)

for some 𝑧1, . . . , 𝑧𝑑 ∈ C. Consequently, by Hölder’s inequality and by Corollary 3.4,

∥ 𝑓 (𝑋)∥𝑞 =






 𝑑∏
𝑖=1

(𝑋 − 𝑧𝑖)






𝑞

≤
𝑑∏
𝑖=1

∥𝑋 − 𝑧𝑖 ∥𝑑𝑞

≤
𝑑∏
𝑖=1

𝐶𝑑 (𝑞 + 1)∥𝑋 − 𝑧𝑖 ∥0 = (𝐶𝑑 (𝑞 + 1))𝑑 ∥ 𝑓 (𝑋)∥0.
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Remark 3.6. Proposition 3.5 remains valid verbatim if one replaces “real-valued
log-concave random variable” by “log-concave random vector in a finite-dimensional
normed space”; see Bourgain [13].

Theorem 3.7 (Hensley [31], Fradelizi [24]). Let 𝐾 ⊆ R𝑛 be a centered convex body.
Assume that the random vector 𝑋 that is distributed uniformly in 𝐾 , is isotropic (or
more generally, that Cov(𝑋) is a scalar matrix). Then for any hyperplanes𝐻1, 𝐻2 ⊆ R𝑛

passing through the origin,

𝑉𝑜𝑙𝑛−1(𝐾 ∩ 𝐻1) ≤ 𝐶 · 𝑉𝑜𝑙𝑛−1(𝐾 ∩ 𝐻2)

where 𝐶 > 0 is a universal constant. In fact, 𝐶 ≤
√

6.

Proof. Let 𝜃 ∈ 𝑆𝑛−1 and denote

𝜌𝜃 (𝑡) =
𝑉𝑜𝑙𝑛−1(𝐾 ∩ (𝑡𝜃 + 𝜃⊥))

𝑉𝑜𝑙𝑛 (𝐾)
.

Then 𝜌𝜃 is the density of the random variable 𝑋 · 𝜃, which is log-concave and isotropic.
According to Proposition 3.3, for any 𝑥 ∈ R,

𝑐′1{ |𝑥 | ≤𝑐′′ } ≤ 𝜎𝜌𝜃 (𝑥𝜎) ≤ 𝐶𝑒−𝑐 |𝑥 |

In particular,
𝑐 ≤ 𝜌𝜃 (0) ≤ 𝐶,

for some universal constants 𝑐, 𝐶 > 0. Thus, for 𝜃1, 𝜃2 ∈ 𝑆𝑛−1,

𝑉𝑜𝑙𝑛−1(𝐾 ∩ 𝜃⊥1 )
𝑉𝑜𝑙𝑛−1(𝐾 ∩ 𝜃⊥2 )

=
𝜌𝜃1 (0)
𝜌𝜃2 (0)

≤ 𝐶

𝑐
≤ 𝐶′.

Thus, up a multiplicative universal constant, volumes of hyperplane sections of 𝐾
are closely related to the covariance matrix of the uniform distribution of 𝐾 .

3.1 Bochner identities and curvature

We will now discuss a technique that originated in Riemannian Geometry and connects
the Poincaré inequality and Curvature/Convexity. The approach was developed in the
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works of Bochner in the 1940s and also Lichnerowicz in the 1950s, and it fits well with
convex bodies and log-concave measures in high dimension. In a nutshell, the idea is
to make local computations involving something like curvature, as well as integrations
by parts, and then dualize and obtain Poincaré-type inequalities. This may sound pretty
vague, let us explain what we mean.

Suppose that 𝜇 is an absolutely-continuous, log-concave probability measure in
R𝑛. The measure 𝜇 is supported in some open, convex set 𝐾 ⊆ R𝑛 (possibly 𝐾 = R𝑛),
and it has a positive, log-concave density

𝑝 = 𝑒−𝜓

in 𝐾 . We will measure distances using the Euclidean metric inR𝑛, but we will measure
volumes using the measure 𝜇. We thus look at the weighted Riemannian manifold or
the metric-measure space

(𝐾, | · |, 𝜇).

We define the Dirichlet energy of a smooth function 𝑓 : 𝐾 → R as

∥ 𝑓 ∥2
¤𝐻1 (𝜇) =

∫
𝐾

|∇ 𝑓 |2𝑑𝜇.

Indeed, we measure the length of the gradient with respect to the Euclidean metric,
while we integrate with respect to the measure 𝜇. The Poincaré constant of 𝜇, denoted
by𝐶𝑃 (𝜇), is the minimal number 𝐴 > 0 such that for all 𝜇-integrable, locally-Lipschitz
functions 𝑓 : 𝐾 → R with

∫
𝐾
𝑓 𝑑𝜇 = 0,∫
𝐾

𝑓 2𝑑𝜇 ≤ 𝐴 ·
∫
𝐾

|∇ 𝑓 |2𝑑𝜇.

The Poincaré constant is finite and non-zero (see [8]), and it is a geometric charac-
teristic of the measure 𝜇 that is closely related to the isoperimetric inequality. The
Poincaré constant of the standard Gaussian measure, for instance, equals one. The
inequality

Var𝜇 ( 𝑓 ) ≤ 𝐶𝑃 (𝜇)
∫
R𝑛

|∇ 𝑓 |2𝑑𝜇,

where Var𝜇 ( 𝑓 ) =
∫
𝑓 2𝑑𝜇 − (

∫
𝑓 𝑑𝜇)2, is referred to as the Poincaré inequality.

The Laplace-type operator associated with our measure-metric space is defined,
initially for 𝑢 ∈ 𝐶∞

𝑐 (𝐾), via

𝐿𝑢 = 𝐿𝜇𝑢 = Δ𝑢 − ∇𝜓 · ∇𝑢 = 𝑒𝜓𝑑𝑖𝑣(𝑒−𝜓∇𝑢). (3.8)

Here,𝐶∞
𝑐 (𝐾) is the space of smooth functions that are compactly-supported in 𝐾 . The

reason for the definition (3.8) is that for any smooth functions 𝑢, 𝑣 : R𝑛 → R, with one
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of them compactly-supported in 𝐾 ,∫
R𝑛

(𝐿𝑢)𝑣𝑑𝜇 =

∫
R𝑛

𝑑𝑖𝑣(𝑒−𝜓∇𝑢)𝑣 = −
∫
R𝑛

[∇𝑢 · ∇𝑣]𝑒−𝜓 = −
∫
R𝑛

[∇𝑢 · ∇𝑣] 𝑑𝜇.

In particular

⟨−𝐿𝑢, 𝑢⟩𝐿2 (𝜇) =

∫
R𝑛

|∇𝑢 |2𝑑𝜇.

Thus 𝐿 is a symmetric operator in 𝐿2(𝜇), defined initially for 𝑢 ∈ 𝐶∞
𝑐 (𝐾). It can have

more than one self-adjoint extension, for example corresponding to the Dirichlet or
Neumann boundary conditions when 𝐾 is bounded.1

It will be convenient to make an (inessential) regularity assumption on the measure
𝜇, in order to avoid all boundary terms in all integrations by parts. We say that 𝜇 is
a regular, log-concave measure in R𝑛 if its density, denoted by 𝑒−𝜓, is smooth and
positive in R𝑛 and the following two requirements hold:

(i) Log-concavity amounts to 𝜓 being convex, so ∇2𝜓 ≥ 0 everywhere in R𝑛. We
require a bit more, that there exists 𝜀 > 0 such that for all 𝑥 ∈ R𝑛,

𝜀 · Id ≤ ∇2𝜓(𝑥) ≤ 1
𝜀
· Id. (3.9)

(ii) The function 𝜓, as well as each of its partial derivatives of any order, grows
at most polynomially at infinity.

According to an exercise below, any log-concave probability measure may be
approximated arbitrary well by a regular one.

From now on, we assume that our probability measure 𝜇 is a regular, log-concave
measure. It turns out that in this case, the operator 𝐿, initially defined on 𝐶∞

𝑐 (R𝑛),
is essentially self-adjoint, positive semi-definite operator in 𝐿2(𝜇) with a discrete
spectrum. Its eigenfunctions 1 ≡ 𝜑0, 𝜑1, . . . constitute an orthonormal basis, and the
eigenvalues of −𝐿 are

0 = 𝜆0(𝐿) < 𝜆1(𝐿) =
1

𝐶𝑃 (𝜇)
≤ 𝜆2(𝐿) ≤ . . .

with the eigenfunction corresponding to the trivial eigenvalue 0 being the constant
function. The eigenfunctions are smooth functions in R𝑛 that do not grow too fast at
infinity: each function

𝜑 𝑗𝑒
−𝜓/2

1When discussing the Bochner technique, it is possible to find ways to circumvent spectral
theory of the operator 𝐿. Still, spectral theory helps us understand and form intuition, and we
will at least quote the relevant spectral theory.
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decays exponentially at infinity. Also (𝜕𝛼𝜑 𝑗)𝑒−𝜓/2 decays exponentially at infinity
for any partial derivative 𝛼. This follows from known results on exponential decay of
eigenfunctions of Schrödinger operators. The eigenvalues are given by the following
infimum of Rayleigh quotients

𝜆𝑘 (𝐿) = inf
𝑓⊥𝜑0 ,...,𝜑𝑘−1

∫
R𝑛 |∇ 𝑓 |2𝑑𝜇∫
R𝑛 𝑓

2𝑑𝜇

where the infimum runs over all (say) locally-Lipschitz functions 𝑓 ∈ 𝐿2(𝜇). Since
𝜑0 ≡ 1, we indeed see that the first eigenfunction 𝜑1 saturates the Poincaré inequality
for 𝜇. The linear space {

𝑎 + 𝐿𝑢 ; 𝑎 ∈ R, 𝑢 ∈ 𝐶∞
𝑐 (R𝑛)

}
is dense in 𝐿2(𝜇). For proofs of these spectral theoretic facts, see references in [38].

Let us return to Geometry. In Riemannian geometry, the Ricci curvature appears
when we commute the Laplacian and the gradient. Analogously, here we have the
easily-verified commutation relation

∇(𝐿𝑢) = 𝐿 (∇𝑢) − (∇2𝜓) (∇𝑢),

where 𝐿 (∇𝑢) = (𝐿 (𝜕1𝑢), . . . , 𝐿 (𝜕𝑛𝑢)). Hence the matrix∇2𝜓 corresponds to a curvature
term, analogous to the Ricci curvature.

Proposition 3.8 (Integrated Bochner’s formula). For any 𝑢 ∈ 𝐶∞
𝑐 (R𝑛),∫

R𝑛

(𝐿𝑢)2𝑑𝜇 =

∫
R𝑛

(
∇2𝜓

)
∇𝑢 · ∇𝑢 𝑑𝜇 +

∫
R𝑛

∥∇2𝑢∥2
𝐻𝑆 𝑑𝜇,

where ∥∇2𝑢∥2
𝐻𝑆

=
∑𝑛
𝑖=1 |∇𝜕𝑖𝑢 |2.

Proof. Integration by parts gives∫
R𝑛

(𝐿𝑢)2𝑑𝜇 = −
∫
R𝑛

∇(𝐿𝑢) · ∇𝑢 𝑑𝜇

= −
∫
R𝑛

𝐿 (∇𝑢) · ∇𝑢 𝑑𝜇 +
∫
R𝑛

[
(∇2𝜓)∇𝑢 · ∇𝑢

]
𝑑𝜇

=

𝑛∑︁
𝑖=1

∫
R𝑛

|∇𝜕𝑖𝑢 |2𝑑𝜇 +
∫
R𝑛

(
∇2𝜓

)
∇𝑢 · ∇𝑢 𝑑𝜇.
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The assumption that 𝑢 is compactly-supported was used in order to discard the
boundary terms when integrating by parts. In fact, it suffices to know that 𝑢 is 𝜇-
tempered. We say that 𝑢 is 𝜇-tempered if it is a smooth function, and (𝜕𝛼𝑢)𝑒−𝜓/2

decays exponentially at infinity for any partial derivative 𝜕𝛼𝑢. Any eigenfunction of 𝐿
is 𝜇-tempered. If 𝑓 is 𝜇-tempered, then so is 𝐿 𝑓 . The following inequality is concerned
with distributions that are uniformly log-concave.

Theorem 3.9 (improved log-concave Lichnerowicz inequality). Let 𝑡 > 0 and assume
that ∇2𝜓(𝑥) ≥ 𝑡 for all 𝑥 ∈ R𝑛. Then,

𝐶𝑃 (𝜇) ≤
√︂
∥Cov(𝜇)∥𝑜𝑝 ·

1
𝑡
,

where ∥𝐴∥𝑜𝑝 is the operator norm of the symmetric matrix 𝐴 ∈ R𝑛×𝑛.

Equality in Theorem 3.9 is attained when 𝜇 is a Gaussian measure, with any cov-
ariance matrix.

Proof of Theorem 3.9. Denote 𝑓 = 𝜑1, the first eigenfunction, normalized so that

∥ 𝑓 ∥𝐿2 (𝜇) = 1.

Set 𝜆 = 1/𝐶𝑃 (𝜇). By the Bochner formula and the Poincaré inequality for 𝜕𝑖 𝑓 (𝑖 =
1, . . . , 𝑛),

𝜆2 =

∫
R𝑛

(𝐿 𝑓 )2𝑑𝜇 =

∫
R𝑛

[(∇2𝜓)∇ 𝑓 · ∇ 𝑓 ]𝑑𝜇 +
∫
R𝑛

∥∇2 𝑓 ∥2
𝐻𝑆𝑑𝜇

≥ 𝑡
∫
R𝑛

|∇ 𝑓 |2𝑑𝜇 + 𝜆
[∫

R𝑛

|∇ 𝑓 |2𝑑𝜇 −
����∫

R𝑛

∇ 𝑓 𝑑𝜇
����2]

= (𝑡 + 𝜆) · 𝜆 − 𝜆
����∫

R𝑛

∇ 𝑓 𝑑𝜇
����2 . (3.10)

Therefore the first eigenfunction has a “preferred direction”, i.e.,����∫
R𝑛

∇ 𝑓 𝑑𝜇
����2 ≥ 𝑡. (3.11)

Using that the 𝑖𝑡ℎ coordinate of ∇ 𝑓 is ∇ 𝑓 · ∇𝑥𝑖 and integrating by parts we have∫
R𝑛

∇ 𝑓 𝑑𝜇 = −
∫
R𝑛

(𝐿 𝑓 )𝑥𝑑𝜇 = 𝜆

∫
R𝑛

𝑓 𝑥𝑑𝜇

Since
∫
𝑓 𝑑𝜇 = 0, by Cauchy-Schwarz, for some 𝜃 ∈ 𝑆𝑛−1,����∫

R𝑛

∇ 𝑓 𝑑𝜇
���� = ∫

R𝑛

⟨∇ 𝑓 , 𝜃⟩𝑑𝜇 = 𝜆

∫
R𝑛

𝑓 (𝑥)⟨𝑥, 𝜃⟩ 𝜇(𝑑𝑥)

≤ 𝜆∥ 𝑓 ∥𝐿2 (𝜇) ·
√︁

Cov(𝜇)𝜃 · 𝜃 ≤ 𝜆∥Cov(𝜇)∥𝑜𝑝 .
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This expression is at least 𝑡, and the theorem follows.

Observe that by testing the Poincaré inequality with linear functions, we obtain

∥Cov(𝜇)∥𝑜𝑝 ≤ 𝐶𝑃 (𝜇).

We thus deduce from Theorem 3.9 that

𝐶𝑃 (𝜇) ≤
1
𝑡
. (3.12)

Inequality (3.12) is sometimes referred to as the log-concave Lichnerowicz inequality.

The Bochner formula states that in the log-concave case, for any 𝑢 ∈ 𝐶∞
𝑐 (R𝑛),∫

R𝑛

(𝐿𝑢)2𝑑𝜇 =

∫
R𝑛

[(∇2𝜓)∇𝑢 · ∇𝑢]𝑑𝜇 +
∫
R𝑛

∥∇2𝑢∥2
𝐻𝑆𝑑𝜇 ≥

∫
R𝑛

∥∇2𝑢∥2
𝐻𝑆𝑑𝜇.

Let us dualize this inequality in order to obtain a Poincaré-type inequality. To this end,
for 𝑓 ∈ 𝐿2(𝜇) we define the dual Sobolev norm

∥ 𝑓 ∥𝐻−1 (𝜇) = sup
{∫

R𝑛

𝑓 𝑢𝑑𝜇 ;
∫
R𝑛

|∇𝑢 |2𝑑𝜇 ≤ 1 𝑢 ∈ 𝐶∞
𝑐 (R𝑛)

}
.

This supremum can be finite only when
∫
𝑓 𝑑𝜇 = 0.

Proposition 3.10. (𝐻−1-inequality) Let 𝜇 be a regular, log-concave probability meas-
ure in R𝑛. Then for 𝑓 ∈ 𝐿2(𝜇),

𝑉𝑎𝑟𝜇 ( 𝑓 ) ≤ ∥∇ 𝑓 ∥2
𝐻−1 (𝜇) =

𝑛∑︁
𝑖=1

∥𝜕𝑖 𝑓 ∥2
𝐻−1 (𝜇) .

Proof. We may assume that
∫
𝑓 𝑑𝜇 = 0. By approximation, assume that 𝑓 = −𝐿𝑢 for

𝑢 ∈ 𝐶∞
𝑐 (R𝑛). See [4] for the approximation argument. Then,∫

R𝑛

𝑓 2𝑑𝜇 =

∫
R𝑛

[∇ 𝑓 · ∇𝑢]𝑑𝜇 ≤ ∥∇ 𝑓 ∥𝐻−1 (𝜇)

√︄∫
R𝑛

∥∇2𝑢∥2
𝐻𝑆
𝑑𝜇

≤ ∥∇ 𝑓 ∥𝐻−1 (𝜇)

√︄∫
R𝑛

(𝐿𝑢)2𝑑𝜇.

The proposition follows.
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The𝐻−1-norm has a geometric interpretation as infinitesimal transport cost, which
may be roughly expressed by saying that when

∫
𝑓 𝑑𝜇 = 0, as 𝜀 → 0,

∥ 𝑓 ∥𝐻−1 (𝜇) ≈
1
𝜀
𝑊2(𝜇, (1 + 𝜀 𝑓 )𝜇). (3.13)

Let us explain (3.13). Let 𝜇1, 𝜇2 be Borel probability measures on R𝑛. We say that a
Borel probability measure 𝛾 on R𝑛 × R𝑛 is a coupling of 𝜇1 and 𝜇2 if

(𝜋𝑖)∗𝛾 = 𝜇𝑖 (𝑖 = 1, 2),

where 𝜋1(𝑥, 𝑦) = 𝑥 and 𝜋2(𝑥, 𝑦) = 𝑦 for (𝑥, 𝑦) ∈ R𝑛 × R𝑛. That is, the marginal of 𝛾
on the first coordinate is 𝜇1, and the marginal of 𝛾 on the second coordinate is 𝜇2. The
𝐿2-Wasserstein distance between 𝜇1, 𝜇2 is defined as

𝑊2(𝜇1, 𝜇2) = inf
𝛾

(∫
R𝑛×R𝑛

|𝑥 − 𝑦 |2 𝑑𝛾(𝑥, 𝑦)
)1/2

, (3.14)

where the infimum runs over all couplings 𝛾 of 𝜇1 and 𝜇2. In probabilistic notation,
we have

𝑊2(𝜇1, 𝜇2) = inf
(𝑋,𝑌 )

√︁
E|𝑋 − 𝑌 |2

where the infimum runs over all possibly-dependent random vectors 𝑋,𝑌 ∈ R𝑛 with
𝑋 having law 𝜇1 and 𝑌 having law 𝜇2.

Proposition 3.11 (“bounding the 𝐻−1-norm by transport cost”). Let 𝜇 be a finite,
compactly-supported measure on R𝑛. Let 𝑓 : R𝑛 → R be a bounded, measurable func-
tion with ∫

𝑓 𝑑𝜇 = 0.

For a sufficiently small 𝜀 > 0, let 𝜇𝜀 be the measure whose density with respect to 𝜇
is the non-negative function 1 + 𝜀 𝑓 . Then,

∥ 𝑓 ∥𝐻−1 (𝜇) ≤ lim inf
𝜀→0+

𝑊2(𝜇, 𝜇𝜀)
𝜀

.

Proof. We need to prove that for any 𝑢 ∈ 𝐶∞
𝑐 (R𝑛), function 𝑢 : R𝑛 → R,∫

R𝑛

𝑓 𝑢𝑑𝜇 ≤

√︄∫
R𝑛

|∇𝑢 |2𝑑𝜇 · lim inf
𝜀→0+

𝑊2(𝜇, 𝜇𝜀)
𝜀

. (3.15)

Fix such a test function 𝑢 ∈ 𝐶∞
𝑐 (R𝑛). Then the second derivatives of 𝑢 are bounded on

R𝑛. By Taylor’s theorem, there exists a constant 𝑅 = 𝑅(𝑢) with

𝑢(𝑦) − 𝑢(𝑥) ≤ |∇𝑢(𝑥) | · |𝑥 − 𝑦 | + 𝑅 |𝑥 − 𝑦 |2 ∀𝑥, 𝑦 ∈ R𝑛. (3.16)
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We may assume that sup | 𝑓 | > 0 (otherwise, the theorem holds trivially), and let 𝜀 > 0
be smaller than 1/sup | 𝑓 |. Then 𝜇𝜀 is a non-negative measure on R𝑛. Let 𝛾 be any
coupling of 𝜇 and 𝜇𝜀 . We see that∫

R𝑛

𝑓 𝑢𝑑𝜇 =
1
𝜀

∫
R𝑛

𝑢𝑑 [𝜇𝜀 − 𝜇] =
1
𝜀

∫
R𝑛×R𝑛

[𝑢(𝑦) − 𝑢(𝑥)] 𝑑𝛾(𝑥, 𝑦).

Write

𝑊
𝛾

2 (𝜇, 𝜇𝜀) =

√︄∫
R𝑛×R𝑛

|𝑥 − 𝑦 |2𝑑𝛾(𝑥, 𝑦).

According to (3.16) and to the Cauchy-Schwarz inequality,∫
R𝑛

ℎ𝑢𝑑𝜇 ≤ 1
𝜀

∫
R𝑛×R𝑛

|∇𝑢(𝑥) | · |𝑥 − 𝑦 |𝑑𝛾(𝑥, 𝑦) + 𝑅

𝜀

∫
R𝑛×R𝑛

|𝑥 − 𝑦 |2𝑑𝛾(𝑥, 𝑦)

≤ 1
𝜀

√︄∫
R𝑛

|∇𝑢(𝑥) |2𝑑𝜇(𝑥) ·𝑊𝛾

2 (𝜇, 𝜇𝜀) +
𝑅

𝜀
𝑊
𝛾

2 (𝜇, 𝜇𝜀)
2.

By taking the infimum over all couplings 𝛾 of 𝜇 and 𝜇𝜀 , we obtain∫
R𝑛

ℎ𝑢𝑑𝜇 ≤

√︄∫
R𝑛

|∇𝑢 |2𝑑𝜇 · 𝑊2(𝜇, 𝜇𝜀)
𝜀

+ 𝑅𝑊2(𝜇, 𝜇𝜀)2

𝜀
, (3.17)

with 𝑅 depending only on 𝑢. We may assume that lim inf 𝜀→0+ 𝑊2(𝜇, 𝜇𝜀)/𝜀 < ∞;
otherwise, there is nothing to prove. Consequently,

lim inf
𝜀→0+

𝑊2(𝜇, 𝜇𝜀)2

𝜀
= lim inf

𝜀→0+
𝜀

(
𝑊2(𝜇, 𝜇𝜀)

𝜀

)2
= 0.

Hence by letting 𝜀 tend to zero in (3.17), we deduce (3.15). The proof is complete.
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Exercises.

(1) Begin with an arbitrary log-concave measure 𝜇 on R𝑛, convolve it by a tiny
Gaussian, and then multiply its density by exp(−𝜀 |𝑥 |2) for small 𝜀 > 0. Show
that the resulting measure is regular, log-concave, with approximately the same
covariance matrix, and that the Poincaré constant cannot jump down by much
under this regularization process.

(2) Verify that the Poincaré constant of the standard Gaussian measure in R𝑛

equals one.
(3) Let 𝑡 > 0, and let 𝑋 be a 𝑡-uniformly log-concave random vector in R𝑛, Use

the Prékopa-Leindler inequality, and show that for any subspace 𝐸 ⊆ R𝑛, also

𝑃𝑟𝑜 𝑗𝐸𝑋

is a 𝑡-uniformly log-concave random vector.
(4) The Bochner formula also states that for any 𝑢 ∈ 𝐶∞

𝑐 (R𝑛),∫
R𝑛

(𝐿𝑢)2𝑑𝜇 ≥
∫
R𝑛

[(∇2𝜓)∇𝑢 · ∇𝑢]𝑑𝜇.

Dualize this inequality in order to prove the Brascamp-Lieb inequality: For
any 𝐶1-smooth 𝑓 ∈ 𝐿2(𝜇),

Var𝜇 ( 𝑓 ) ≤
∫
R𝑛

(
∇2𝜓

)−1
∇ 𝑓 · ∇ 𝑓 𝑑𝜇(𝑥).

Can you find equality cases, other than a constant function 𝑓 ?
(5) The Maurey-Pisier proof of Gaussian concentration.

(a) Let 𝑋 and 𝑌 be two independent, standard Gaussian random vectors in
R𝑛. For 𝜃 ∈ [0, 𝜋/2] set

𝑋𝜃 = (sin 𝜃)𝑋 + (cos 𝜃)𝑌 .

Prove that (𝑋𝜃 , 𝜕𝑋𝜃/𝜕𝜃) coincides in distribution with (𝑋,𝑌 ).
(b) Let 𝐹 : R𝑛 → R be a locally-Lipschitz function and let 𝜑 : R𝑛 → R be a

convex function. Prove that

E𝜑(𝐹 (𝑋) − 𝐹 (𝑌 )) = E𝜑
(∫ 𝜋/2

0

〈
∇𝐹 (𝑋𝜃 ),

𝜕𝑋𝜃

𝜕𝜃

〉
𝑑𝜃

)
.

(c) Denote 𝐸 = E𝐹 (𝑋). Conclude that for any 𝜆 > 0,

E𝑒𝜆(𝐹 (𝑋)−𝐸 ) ≤ E𝑒𝜆𝜋 ⟨∇𝐹 (𝑋) ,𝑌 ⟩/2 = E𝑒𝜆
2 𝜋2 |∇𝐹 (𝑋) |2/8.
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(d) Conclude that if 𝐹 is 1-Lipschitz, then for all 𝑡 > 0,

P ( |𝐹 (𝑋) − 𝐸 | ≥ 𝑡) ≤ 2𝑒−2𝑡2/𝜋2
.

(6) Let 𝜇, 𝜇1, 𝜇2, . . . be log-concave probability measures on R𝑛. Assume that
𝜇𝑁 −→ 𝜇 weakly, i.e., that for any continuous, compactly-supported function
𝜑 : R𝑛 → R,

lim
𝑁→∞

∫
R𝑛

𝜑𝑑𝜇𝑁 =

∫
R𝑛

𝜑𝑑𝜇.

Suppose that 𝜇𝑁 is log-concave for all 𝑁 . Prove that 𝜇 is log-concave.
(7) Complete the proof of Proposition 3.3
(8) Let 𝜌 : R𝑛 → [0,∞) be a log-concave probability density. Prove that there

exist 𝐴, 𝐵 > 0 such that for all 𝑥 ∈ R𝑛,

𝜌(𝑥) ≤ 𝐴𝑒−𝐵 |𝑥 | .
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Lecture 4

The thin-shell bound under convexity assumption

Yesterday we discussed the thin-shell theorem, asserting that under the isotropic nor-
malization, random vectors whose mass is concentrated in a thin spherical shell admit
approximately Gaussian marginals. In this lecture we discuss the main ideas in the
proof of the following thin shell bound:

Theorem 4.1. Let 𝑋 be an isotropic, log-concave random vector in R𝑛. Then,

Var( |𝑋 |2) = E
(
|𝑋 |2 − 𝑛

)2
≤ 𝐶𝑛, (4.1)

where 𝐶 > 0 is a universal constant.

By (4.1), for any isotropic, log-concave random vector 𝑋 in R𝑛,

E( |𝑋 | −
√
𝑛)2 ≤ 1

𝑛
E( |𝑋 |2 − 𝑛)2 =

1
𝑛

Var( |𝑋 |2) ≤ 𝐶. (4.2)

Hence most of the mass of the random vector 𝑋 is located in a thin-spherical shell of
radius

√
𝑛 and width 𝐶.

Theorem 4.1 is tight, up to the value of the universal constant. Indeed, if 𝑋 is a
standard Gaussian random vector in R𝑛 or if 𝑋 is distributed uniformly in the cube
[−
√

3,
√

3]𝑛 ⊆ R𝑛, then 𝑋 is isotropic and log-concave with

Var( |𝑋 |2) = 𝐶𝑛,

where 𝐶 = 2 in the Gaussian case and 𝐶 = 4/5 in the case of the cube.

Remark 4.2. Theorem 4.1 and the Bourgain-Milman inequality imply an affirmat-
ive answer to Bourgain’s slicing problem. Bourgain’s slicing problem has played a
highly influential role in the development of the theory of high-dimensional probab-
ility measures with convexity properties. An equivalent formulation, now established
as a theorem, is the following corrected form of the Busemann-Petty conjecture: Let
𝑛 ≥ 2 and let𝐾,𝑇 ⊆ R𝑛 be centered convex bodies such that for any hyperplane𝐻 ⊆ R𝑛

through the origin,
Vol𝑛−1(𝐾 ∩ 𝐻) ≤ Vol𝑛−1(𝑇 ∩ 𝐻). (4.3)

Then
Vol𝑛 (𝐾) ≤ 𝐶 · Vol𝑛 (𝑇) (4.4)

for a universal constant𝐶 > 0. For background on the slicing problem, see Ball [3] and
Klartag and Milman [37]. For the resolution of Bourgain’s problem in the affirmative,
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building on Guan’s breakthrough [27], see Klartag and Lehec [39]. For a deduction of
Bourgain’s slicing theorem from Theorem 4.1 and the Bourgain-Milman inequality,
see Eldan and Klartag [21].

We proceed with the main ideas of the proof of Theorem 4.1. Let 𝜇 be a probability
measure onR𝑛 with a log-concave density. Recall the 𝐻−1(𝜇)-norm, whose geometric
meaning is understood through the infinitesimal transport cost bound

∥ 𝑓 ∥𝐻−1 (𝜇) ≤ lim inf
𝜀→0+

𝑊2(𝜇, (1 + 𝜀 𝑓 )𝜇)
𝜀

, (4.5)

where𝑊2 is the 𝐿2-Wasserstein distance. The bound(4.5) is valid under minimal reg-
ularity assumptions on 𝑓 , provided that

∫
𝑓 𝑑𝜇 = 0. Recall the 𝐻−1-inequality

Var𝜇 ( 𝑓 ) ≤
𝑛∑︁
𝑖=1

∥𝜕𝑖 𝑓 ∥2
𝐻−1 (𝜇) (4.6)

that holds for any smooth function 𝑓 ∈ 𝐿2(𝜇). In particular, by substituting 𝑓 (𝑥) = |𝑥 |2
in (4.6) and noting that 𝜕𝑖 𝑓 = 2𝑥𝑖 , Theorem 4.1 follows from the following:

Theorem 4.3. Let 𝜇 be an isotropic, log-concave probability measure in R𝑛. Then,

𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥2
𝐻−1 (𝜇) ≤ 𝐶𝑛,

where 𝐶 > 0 is a universal constant.

Write 𝑝 for the log-concave density of the probability measure 𝜇 inR𝑛. For 𝑦 ∈ R𝑛,
the corresponding exponential tilt of 𝜇 is the probability measure 𝜇𝑦 with density

𝑝𝑦 (𝑥) = 𝑒𝑥 ·𝑦−Λ(𝑦) 𝑝(𝑥) (𝑥 ∈ R𝑛), (4.7)

where
Λ(𝑦) = log

∫
R𝑛

𝑒𝑥 ·𝑦𝑑𝜇(𝑥)

is the logarithmic Laplace transform. Observe that for any 𝑥 ∈ R𝑛 and 𝑖 = 1, . . . , 𝑛, as
𝜀 → 0,

𝑝𝜀𝑒𝑖 (𝑥) = (1 + 𝜀𝑥𝑖)𝑝(𝑥) + 𝑜(𝜀).

It is an exercise to modify the proof of (4.5) and show that when 𝜇 is compactly-
supported and 𝑖 = 1, . . . , 𝑛,

∥𝑥𝑖 ∥𝐻−1 (𝜇) ≤ lim sup
𝜀→0+

𝑊2(𝜇, 𝜇𝜀𝑒𝑖 )
𝜀

. (4.8)
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Thus, in order to prove Theorem 4.3, it suffices to construct efficient couplings of
exponential tilts of 𝜇. The specific construction that we use for coupling tilts is related
to the theory of non-linear filtering and to Eldan’s stochastic localization from [20],
which we now describe.

For simplicity, let us assume that the log-concave probability measure 𝜇 is compactly-
supported. For 𝑡 ≥ 0 and 𝑦 ∈ R𝑛 we consider the 𝑡-log-Laplace transform

Λ𝑡 (𝑦) = log
∫
R𝑛

𝑒𝑦 ·𝑥−𝑡 |𝑥 |
2/2𝑝(𝑥)𝑑𝑥,

and the 𝑡-localized tilts or 𝑡-Gaussian needles, which are the probability densities:

𝑝𝑡 ,𝑦 (𝑥) = 𝑒𝑦 ·𝑥−𝑡 |𝑥 |
2/2−Λ𝑡 (𝑦) 𝑝(𝑥) =

𝑝(𝑥)𝛾1/𝑡 (𝑦/𝑡 − 𝑥)
𝑝 ∗ 𝛾1/𝑡 (𝑦/𝑡)

, (4.9)

where
𝛾𝑠 (𝑥) = (2𝜋𝑠)−𝑛/2 exp(−|𝑥 |2/(2𝑠))

is the density of a centered Gaussian in R𝑛 of covariance 𝑠 · Id. The main advantage
of the 𝑝𝑡 ,𝑦 over the exponential tilt 𝑝𝑦 is that 𝑝𝑡 ,𝑦 is 𝑡-uniformly log-concave. In fact,
almost everywhere in R𝑛,

∇2(− log 𝑝𝑡 ,𝑦) ≥ 𝑡 · Id. (4.10)

Denote by 𝑎𝑡 (𝑦) the barycenter of the probability density 𝑝𝑡 ,𝑦 , namely

𝑎𝑡 (𝑦) = ∇Λ𝑡 (𝑦) =
∫
R𝑛

𝑥𝑝𝑡 ,𝑦 (𝑥)𝑑𝑥 ∈ R𝑛. (4.11)

It is an exercise to show that 𝑎𝑡 : R𝑛→ R𝑛 is a Lipschitz map, with a Lipschitz constant
bounded uniformly in 𝑡 ∈ [0,+∞). For reasons to be clarified soon, we are interested
in the following integral equation:

Lemma 4.4. For any continuous path𝑤 = (𝑤𝑡 )𝑡≥0 inR𝑛 with𝑤0 = 0 and for any initial
condition 𝜃0 ∈ R𝑛, there exists a unique solution (𝜃𝑡 )𝑡≥0 to the integral equation

𝜃𝑡 = 𝜃0 + 𝑤𝑡 +
∫ 𝑡

0
𝑎𝑠 (𝜃𝑠)𝑑𝑠, 𝑡 ≥ 0. (4.12)

The solution 𝜃𝑡 = 𝜃𝑡 (𝑥) is continuous in (𝑡, 𝑥) ∈ [0,∞) × R𝑛 and is smooth in 𝑥 ∈ R𝑛

for any fixed 𝑡 ≥ 0. We denote
𝐺𝑡 ,𝑤(𝜃0) = 𝜃𝑡 .

Thanks to the Lipschitz property of the map 𝑎𝑡 : R𝑛 → R𝑛, Lemma 4.4 follows
from standard Ordinary Differential Equations (ODE) theory; see [40], also for the
standard fact that the map

𝐺𝑡 ,𝑤 : R𝑛 → R𝑛 (4.13)
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is a diffeomorphism. Consider a standard Brownian motion in R𝑛

(𝑊𝑡 )𝑡≥0,

with𝑊0 = 0. We will use the continuous Brownian path𝑊 = (𝑊𝑡 )𝑡≥0 in Lemma 4.4.
Abbreviate

𝐺𝑡 (𝑦) = 𝐺𝑡 ,𝑊 (𝑦).

Proposition 4.5. For any 𝑦 ∈ R𝑛, the stochastic process (𝐺𝑡 (𝑦))𝑡≥0 has the same law
as the process

(𝑦 + 𝑡𝑋𝑦 +𝑊𝑡 )𝑡≥0

where 𝑋𝑦 is a random vector with law 𝜇𝑦 which is independent of the Brownian motion
(𝑊𝑡 )𝑡≥0.

Proposition 4.5 is part of the theory of non-linear filtering.

Corollary 4.6. For any 𝑦 ∈ R𝑛, almost surely, the limit

lim
𝑡→∞

𝐺𝑡 (𝑦)
𝑡

(4.14)

exists, and has law 𝜇𝑦 .

Indeed, thanks to Proposition 4.5, Corollary 4.6 follows from the fact that

lim
𝑡→∞

𝑦 + 𝑡𝑋𝑦 +𝑊𝑡
𝑡

= 𝑋𝑦 + lim
𝑡→∞

𝑊𝑡

𝑡
= 𝑋𝑦 ,

which is a random vector with law 𝜇𝑦 . Thus the limit in (4.14), usually denoted by
𝑎∞(𝑦), provides simultaneous coupling of all of the tilts (𝜇𝑦)𝑦∈R𝑛 .

Proof of Proposition 4.5. Our proof requires some familiarity with stochastic pro-
cesses.

Step 1. Observe that it suffices to prove the proposition for 𝑦 = 0, since switching
from 𝑋0 to 𝑋𝑦 amounts to replacing the function

𝑎𝑠 (𝜃)

by
𝑎𝑠 (𝜃 + 𝑦).

We may thus assume that 𝑦 = 0 and abbreviate 𝑋 = 𝑋0. For 𝑡 ≥ 0 define

𝜃𝑡 = 𝑡𝑋 +𝑊𝑡 . (4.15)
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The random vector 𝜃𝑡/𝑡 = 𝑋 +𝑊𝑡/𝑡 is a noisy observation of 𝑋 , which typically gets
more and more accurate as 𝑡 increases. Since 𝑊𝑡/𝑡 is a centered Gaussian random
vector of covariance Id/𝑡, the density of 𝜃𝑡/𝑡 equals

𝑝 ∗ 𝛾1/𝑡 .

Our goal is to prove that (𝜃𝑡 )𝑡≥0 coincides in law with (𝐺𝑡 ,𝐵 (0))𝑡≥0 for a standard
Brownian motion (𝐵𝑡 ))𝑡≥0 in R𝑛 with 𝐵0 = 0.

Step 2. What is the conditional law of 𝑋 given 𝜃𝑡? It follows from (4.15) that the
joint density of (𝑋, 𝜃𝑡/𝑡) in R𝑛 × R𝑛 is

(𝑥, 𝑧) ↦→ 𝑝(𝑥)𝛾1/𝑡 (𝑧 − 𝑥) (𝑥, 𝑧) ∈ R𝑛 × R𝑛. (4.16)

Hence the density of the conditional law of 𝑋 given 𝜃𝑡/𝑡 is the normalized fiber of the
joint density in (4.16), namely the probability density

𝑝(𝑥)𝛾1/𝑡 (𝜃𝑡/𝑡 − 𝑥)
𝑝 ∗ 𝛾1/𝑡 (𝜃𝑡/𝑡)

= 𝑝𝑡 , 𝜃𝑡 (𝑥),

where we used (4.9) in the last passage. Thus 𝑝𝑡 , 𝜃𝑡 is the density of the conditional
law of 𝑋 given the observation 𝜃𝑡 (or given the observation 𝜃𝑡/𝑡). In fact, 𝑝𝑡 , 𝜃𝑡 is also
the density of the conditional law of 𝑋 given all past observations (𝜃𝑠)0≤𝑠≤𝑡 . Indeed,
it is an exercise to show that the time reversal

𝐵𝑡 = 𝑡𝑊1/𝑡 (𝑡 > 0)

is also a standard Brownian motion in R𝑛, with𝑊𝑡 = 𝑡𝐵1/𝑡 . Thus,

Law (𝑋 | (𝑠𝑋 +𝑊𝑠)0<𝑠≤𝑡 ) = Law
(
𝑋 | (𝑋 + 𝑠𝑊1/𝑠)𝑠≥1/𝑡

)
= Law

(
𝑋 | (𝑋 + 𝐵𝑠)𝑠≥1/𝑡

)
= Law

(
𝑋 |𝑋 + 𝐵1/𝑡 and (𝐵𝑠 − 𝐵1/𝑡 )𝑠>1/𝑡

)
= Law

(
𝑋 |𝑋 + 𝐵1/𝑡

)
= Law (𝑋 |𝑡𝑋 +𝑊𝑡 ) ,

since 𝐵𝑠 − 𝐵1/𝑡 is independent of 𝑋 and 𝑋 + 𝐵1/𝑡 . Writing F𝑡 for the 𝜎-algebra gen-
erated by (𝜃𝑠)0≤𝑠≤𝑡 , we conclude that

E[𝑋 |F𝑡 ] =
∫
R𝑛

𝑥𝑝𝑡 , 𝜃𝑡 (𝑥)𝑑𝑥 = 𝑎𝑡 (𝜃𝑡 ). (4.17)

Step 3. For 𝑡 ≥ 0 define 𝐵𝑡 ∈ R𝑛 via the equation

𝜃𝑡 = 𝐵𝑡 +
∫ 𝑡

0
𝑎𝑠 (𝜃𝑠)𝑑𝑠. (4.18)

Thus, for 𝑡 ≥ 0,
𝜃𝑡 = 𝐺𝑡 ,𝐵 (0),
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where 𝐵 = (𝐵𝑡 )𝑡≥0. It remains to prove that the innovation process (𝐵𝑡 )𝑡≥0 is a standard
Brownian motion in R𝑛. From (4.18) we see that

𝐵𝑡 = 𝑊𝑡 + 𝑡𝑋 −
∫ 𝑡

0
𝑎𝑠 (𝜃𝑠)𝑑𝑠 = 𝑊𝑡 +

∫ 𝑡

0
(𝑋 − E[𝑋 |F𝑠]) 𝑑𝑠. (4.19)

By (4.18) the random vector 𝐵𝑡 is measurable with respect to F𝑡 . Consequently,

𝐵𝑡 = 𝑊𝑡 +
∫ 𝑡

0
𝑣𝑠𝑑𝑠 (4.20)

where
E[𝑣𝑡 | (𝐵𝑠)0≤𝑠≤𝑡 ] = 0,

and where for 𝑠 < 𝑡 the increment 𝑊𝑡 −𝑊𝑠 is a centered, Gaussian random vector
of covariance (𝑡 − 𝑠)Id that is independent of (𝐵𝑟 )0≤𝑟≤𝑠 and of (𝑣𝑟 )0≤𝑟≤𝑠. We see
from (4.20) that (𝐵𝑡 )𝑡≥0 is a martingale whose quadratic variation is that of a standard
Brownian motion. Hence it is a Brownian motion, by Lévy’s characterization.

Thus far we have shown that for any 𝑥, 𝑦 ∈ R𝑛,

𝑊2(𝜇𝑥 , 𝜇𝑦) ≤

√︄
E

���� lim𝑡→∞
𝐺𝑡 (𝑥)
𝑡

− lim
𝑡→∞

𝐺𝑡 (𝑦)
𝑡

����2, (4.21)

because the first limit in (4.21) has law 𝜇𝑥 while the second has law 𝜇𝑦 . The next
proposition refines (4.21) by allowing to stop the processes at a finite time.

Lemma 4.7. For 𝑥, 𝑦 ∈ R𝑛 and 𝑡 > 0,

𝑊2(𝜇𝑥 , 𝜇𝑦) ≤
1
𝑡
·
√︃
E |𝐺𝑡 (𝑥) − 𝐺𝑡 (𝑦) |2.

Proof. For 𝑡 ≥ 0 and 𝑦 ∈R𝑛we denote by 𝐴𝑡 (𝑦) the covariance matrix of the probability
density 𝑝𝑡 ,𝑦 , that is,

𝐴𝑡 (𝑦) = ∇2Λ𝑡 (𝑦) =
∫
R𝑛

𝑥 ⊗ 𝑥 𝑝𝑡 ,𝑦 (𝑥)𝑑𝑥 − 𝑎𝑡 (𝑦) ⊗ 𝑎𝑡 (𝑦) ∈ R𝑛×𝑛. (4.22)

Recall from (4.10) that 𝑝𝑡 ,𝑦 is uniformly log-concave. Thus by the log-concave Lich-
nerowicz inequality,

𝐴𝑡 (𝑦) = ∇2Λ𝑡 (𝑦) ≤
1
𝑡
· Id.
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This concavity property implies contraction properties of the time-dependent stochastic
gradient ascent from Lemma 4.4. That is, for 𝑦1, 𝑦2 ∈ R𝑛,

⟨𝑎𝑡 (𝑦1) − 𝑎𝑡 (𝑦2), 𝑦1 − 𝑦2⟩ = ⟨∇Λ𝑡 (𝑦1) − ∇Λ𝑡 (𝑦2), 𝑦1 − 𝑦2⟩ (4.23)

=

∫ 1

0

〈
∇2Λ𝑡 (𝑠𝑦1 + (1 − 𝑠)𝑦2) (𝑦1 − 𝑦2), 𝑦1 − 𝑦2

〉
𝑑𝑠 ≤ 1

𝑡
· |𝑦1 − 𝑦2 |2.

By Lemma 4.4,

𝐺𝑡 (𝑥) − 𝐺𝑡 (𝑦) = 𝑥 − 𝑦 +
∫ 𝑡

0
[𝑎𝑠 (𝐺𝑠 (𝑥)) − 𝑎𝑠 (𝐺𝑠 (𝑦))] 𝑑𝑠.

Hence by (4.23),

𝑑

𝑑𝑡
|𝐺𝑡 (𝑥) − 𝐺𝑡 (𝑦) |2 = 2⟨𝑎𝑡 (𝐺𝑡 (𝑥)) − 𝑎𝑡 (𝐺𝑡 (𝑦)), 𝐺𝑡 (𝑥) − 𝐺𝑡 (𝑦)⟩

≤ 2
𝑡
|𝐺𝑡 (𝑥) − 𝐺𝑡 (𝑦) |2.

Equivalently,
𝑑

𝑑𝑡

|𝐺𝑡 (𝑥) − 𝐺𝑡 (𝑦) |2
𝑡2

≤ 0.

Hence

|𝐺𝑡 (𝑥) − 𝐺𝑡 (𝑦) |2
𝑡2

≥ lim sup
𝑠→∞

|𝐺𝑠 (𝑥) − 𝐺𝑠 (𝑦) |2
𝑠2 =

���� lim
𝑠→∞

𝐺𝑠 (𝑥) − 𝐺𝑠 (𝑦)
𝑠

����2 ,
where the limit exists almost surely. The conclusion now follows from (4.21).

Recall that 𝐺𝑡 : R𝑛 → R𝑛 is a smooth diffeomorphism. Denote

𝑀𝑡 = 𝐺
′
𝑡 (0) ∈ R𝑛×𝑛,

i.e., 𝑀𝑡 𝑣 = 𝜕𝑣𝐺𝑡 (0) for any 𝑣 ∈ R𝑛. We write |𝑀𝑡 |2 for the sum of the squares of the
𝑛2 entries of the matrix 𝑀𝑡 .

Corollary 4.8. For any centered, compactly-supported, log-concave probability meas-
ure 𝜇 and 𝑡 > 0,

𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥2
𝐻−1 (𝜇) ≤

1
𝑡2

· E|𝑀𝑡 |2.

Proof. It follows from Lemma 4.7 that

lim sup
𝜀→0

𝑊2
2 (𝜇, 𝜇𝜀𝑒𝑖 )
𝜀2 ≤ 1

𝑡2
lim sup
𝜀→0

E

����𝐺𝑡 (0) − 𝐺𝑡 (𝜀𝑒𝑖)𝜀

����2 .
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It is explained in [40] that the dominated convergence theorem allows us to replace
expectation and limit, and obtain that

lim sup
𝜀→0

𝑊2
2 (𝜇, 𝜇𝜀𝑒𝑖 )
𝜀2 ≤ 1

𝑡2
E

���� lim𝜀→0

𝐺𝑡 (0) − 𝐺𝑡 (𝜀𝑒𝑖)
𝜀

����2 =
1
𝑡2

· E|𝐺′
𝑡 (0)𝑒𝑖 |2.

Thus, by (4.8),

𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥2
𝐻−1 (𝜇) ≤

1
𝑡2

𝑛∑︁
𝑖=1

E|𝐺′
𝑡 (0)𝑒𝑖 |2 =

1
𝑡2

· E|𝑀𝑡 |2.

In order to prove Theorem 4.3 we will substitute 𝑡 = 1 in Corollary 4.8, and analyze
the growth of the matrix-valued process (𝑀𝑠)0≤𝑠≤1. This analysis is quite technical,
and it is described in the Appendix below.

Remark 4.9. Why does it make sense to use the above stochastic processes in order
to bound the Wasserstein distance between exponential tilts of 𝜇? After all, it is well-
known that under mild regularity assumptions, the Wasserstein distance 𝑊2 between
two probability measures 𝜇1 and 𝜇2, as defined in (3.14), is realized by the Brenier
map. That is, if 𝑝𝑖 is the density of 𝜇𝑖 for 𝑖 = 1,2, then there exists an essentially unique
map 𝑇 that pushes forward 𝜇1 to 𝜇2 such that

𝑊2(𝜇1, 𝜇2) =

√︄∫
R𝑛

|𝑇𝑥 − 𝑥 |2𝑑𝜇1(𝑥).

By “essentially unique” we mean that 𝑇 is uniquely determined up to a set whose
𝜇1-measure is zero. See e.g. Villani [55] and references therein for background on the
Brenier map. The Brenier map𝑇 is also the essentially unique map of the form𝑇 = ∇Φ
for a convex function Φ : R𝑛 → R that pushes forward 𝜇1 to 𝜇2. It satisfies the partial
differential equation of Monge-Ampère type:

𝑝2(∇Φ(𝑥)) det∇2Φ(𝑥) = 𝑝1(𝑥) (𝑥 ∈ R𝑛). (4.24)

Why don’t we use this optimal Brenier map in order to bound the Wasserstein distance
between exponential tilts of a log-concave measure 𝜇? The reason is that analytically,
the Brenier map is rather hard to analyze. In high dimensions, it is challenging to extract
useful quantitative information from a partial differential equation such as (4.24); see
[36] for an exception.

The coupling that we chose above, while non-optimal in the Wasserstein sense, is
easier to analyze and it respects both the isotropy assumption and the log-concavity.
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Second, it is optimal in a certain ways. In fact, let 𝑋 and (𝑊𝑡 )𝑡≥0 be as in the proof of
Proposition 4.5. Consider all stochastic processes of the form

𝜂𝑡 = 𝑊𝑡 +
∫ 𝑡

0
𝑢𝑠𝑑𝑠, (4.25)

where the stochastic process (𝑢𝑡 )𝑡≥0 is assumed adapted to the filtration of the Brownian
motion (𝑊𝑡 )𝑡≥0. For any fixed 𝑇 > 0, among all processes (𝜂𝑡 )𝑡≥0 of the form (4.25)
such that

Law(𝜂𝑇 ) = Law(𝑇𝑋 +𝑊𝑇 ),

the process (𝜃𝑡 )𝑡≥0 with 𝜃𝑡 = 𝑊𝑡 +
∫ 𝑡

0 𝑎𝑠 (𝜃𝑠)𝑑𝑠 minimizes the energy

E
∫ 𝑇

0
|𝑢𝑠 |2𝑑𝑠.

This is explained in Lehec [43]. Thus, the process (𝜃𝑡/𝑡)𝑡>0 is the minimal “perturba-
tion” of the rescaled Brownian motion that leads to the law of 𝑋 +𝑊𝑡/𝑡, which tends
to 𝑋 as 𝑡 →∞. Moreover, the formulae involving this drift are particularly convenient
for analyzing exponential tilts of the given measure 𝜇. This provides some justification
for the strategy of coupling exponential tilts using this process.

Remark 4.10. A considerable strengthening of Theorem 4.1 is the Kannan-Lovasz-
Simonovits (KLS) conjecture [34]. In one of its formulations, the conjecture suggests
that for any isotropic, log-concave random vector 𝑋 in R𝑛 and any locally-Lipschitz
function 𝑓 : R𝑛 → R with E 𝑓 2(𝑋) < ∞,

𝑉𝑎𝑟 𝑓 (𝑋) ≤ 𝐶E|∇ 𝑓 (𝑋) |2, (4.26)

where 𝐶 > 0 is a universal constant. Theorem 4.1 establishes (4.26) in the particular
case where 𝑓 (𝑥) = |𝑥 |2, though the general case remains open. See [38] for information
about this conjecture, and for a proof of a variant of (4.26) where 𝐶 is replaced by
𝐶 log 𝑛.

Exercises.

(1) Modify the proof of (4.5) and prove (4.8).
(2) Let (𝑊𝑡 )𝑡≥0 be a standard Brownian motion with𝑊0 = 0. Set 𝐵𝑡 = 𝑡𝑊1/𝑡 for

𝑡 > 0 and 𝐵0 = 0. Prove that (𝐵𝑡 )𝑡≥0 is again a standard Brownian motion in
R𝑛.

(3) Let 𝜇 be an absolutely-continuous, compactly-supported probability measure
with density 𝑝 in R𝑛. Consider the vector 𝑎𝑡 (𝑦) (𝑡 ≥ 0, 𝑦 ∈ R𝑛) defined in
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(4.11) above. Prove that 𝑎𝑡 : R𝑛 → R𝑛 is a Lipschitz map, with a Lipschitz
constant bounded uniformly in 𝑡 ∈ [0,+∞).

(4) Recall the proof of the Hadamard perturbation lemma and of the Hardy-Littlewood-
Polya inequality.
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Appendix

In order to prove Theorem 4.3, we should understand the matrix-valued process
(𝑀𝑡 )𝑡≥0 of the derivative at zero of the random diffeomorphism𝐺𝑡 . Recall from (4.22)
that we denote

𝐴𝑡 (𝑦) = ∇2Λ𝑡 (𝑦) = Cov(𝑝𝑡 ,𝑦)

and let us further abbreviate
𝐴𝑡 = 𝐴𝑡 (𝐺𝑡 (0)).

The integral equation of Lemma 4.4 states that

𝐺𝑡 (𝑦) = 𝑦 +𝑊𝑡 +
∫ 𝑡

0
∇Λ𝑠 (𝐺𝑠 (𝑦)))𝑑𝑠.

By differentiating with respect 𝑦 (see [40] for justification) we see that

𝐺′
𝑡 (0) = Id +

∫ 𝑡

0
∇2Λ𝑠 (𝐺𝑠 (0)))𝐺′

𝑠 (0)𝑑𝑠 = Id +
∫ 𝑡

0
𝐴𝑠𝑀𝑠𝑑𝑠.

Consequently, we have the product integral equation{
𝑀0 = Id
𝑑
𝑑𝑡
𝑀𝑡 = 𝐴𝑡𝑀𝑡

(4.27)

The following lemma is a non-probabilistic bound for the solution of the product integ-
ral equation. Denote the eigenvalues of 𝐴𝑡 , repeated according to their multiplicity, by

𝜆1(𝑡) ≥ 𝜆2(𝑡) ≥ . . . ≥ 𝜆𝑛 (𝑡) > 0.

Lemma 4.11. For any 𝑡 > 0,

|𝑀𝑡 |2 ≤
𝑛∑︁
𝑖=1

exp
(
2
∫ 𝑡

0
𝜆𝑖 (𝑠)𝑑𝑠

)
. (4.28)

It is straightforward to verify that for 𝑛 = 1, equality holds in (4.28). Rather than
proving Lemma 4.11 along the lines of [40], we will prove the lemma by using the
Hardy-Littlewood-Polya inequality (see e.g. [50]). This inequality states that when
𝑏1 ≥ 𝑏2 ≥ . . . ≥ 𝑏𝑚 are real numbers and 𝑐1, . . . , 𝑐𝑛 ∈ R are such that

𝑘∑︁
𝑖=1

𝑏𝑖 ≤
𝑘∑︁
𝑖=1

𝑐𝑖 (𝑘 = 1, . . . , 𝑛), (4.29)
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then for any convex, increasing function 𝜑 : R → R,

𝑛∑︁
𝑖=1

𝜑(𝑏𝑖) ≤
𝑛∑︁
𝑖=1

𝜑(𝑐𝑖). (4.30)

Denote the singular values of 𝑀𝑡 by

𝑒𝑏1 (𝑡 ) ≥ . . . ≥ 𝑒𝑏𝑛 (𝑡 ) . (4.31)

The numbers 𝑒2𝑏1 (𝑡 ) , . . . , 𝑒2𝑏𝑛 (𝑡 ) are the eigenvalues of 𝑀∗
𝑡 𝑀𝑡 . These are absolutely-

continuous functions of 𝑡. The proof of Lemma 4.11 relies on the following:

Lemma 4.12. For 𝑘 = 1, . . . , 𝑛 and for almost any 𝑡 > 0,

𝑑

𝑑𝑡

𝑘∑︁
𝑖=1

𝑏𝑖 (𝑡) ≤
𝑘∑︁
𝑖=1

𝜆𝑖 (𝑡).

Proof. Fix 𝑡 > 0 at which 𝑏1(𝑡), . . . , 𝑏𝑛 (𝑡) are differentiable, which happens almost
everywhere. By an approximation argument it suffices to prove the lemma under the
additional assumption that the inequalities in (4.31) are strict. Since 𝐴𝑡 is a symmetric
matrix, it follows from (4.27) that

𝑑

𝑑𝑡
𝑀∗
𝑡 𝑀𝑡 = 2𝑀∗

𝑡 𝐴𝑡𝑀𝑡 . (4.32)

From the singular value decomposition of the matrix 𝑀𝑡 , there exists orthonormal
bases 𝑢1, . . . , 𝑢𝑛 ∈ R𝑛 and 𝑣1, . . . , 𝑣𝑛 ∈ R𝑛 such that

𝑀𝑡𝑢𝑖 = 𝑒
𝑏𝑖 (𝑡 )𝑣𝑖 (𝑖 = 1, . . . , 𝑛).

In particular 𝑀∗
𝑡 𝑀𝑡𝑢𝑖 = 𝑒

2𝑏𝑖 (𝑡 )𝑢𝑖 . According to (4.32) and the Hadamard perturbation
lemma,

𝑑

𝑑𝑡
𝑒2𝑏𝑖 (𝑡 ) = 2𝑀∗

𝑡 𝐴𝑡𝑀𝑡𝑢𝑖 · 𝑢𝑖 (𝑖 = 1, . . . , 𝑛).

Thus
2𝑒2𝑏𝑖 (𝑡 ) 𝑑

𝑑𝑡
𝑏𝑖 (𝑡) = 2⟨𝐴𝑡𝑀𝑡𝑢𝑖 , 𝑀𝑡𝑢𝑖⟩ = 2𝑒2𝑏𝑖 (𝑡 ) ⟨𝐴𝑡 𝑣𝑖 , 𝑣𝑖⟩.

In particular,
𝑑

𝑑𝑡

𝑘∑︁
𝑖=1

𝑏𝑖 (𝑡) =
𝑘∑︁
𝑖=1

⟨𝐴𝑡 𝑣𝑖 , 𝑣𝑖⟩ ≤
𝑘∑︁
𝑖=1

𝜆𝑖 (𝑡),

by the min-max characterization of the eigenvalues of the symmetric matrix 𝐴𝑡 .
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Proof of Lemma 4.11. Since 𝑏𝑖 (0) = 0 for all 𝑖, we learn from Lemma 4.12 that for
𝑘 = 1, . . . , 𝑛,

𝑘∑︁
𝑖=1

𝑏𝑖 (𝑡) ≤
𝑘∑︁
𝑖=1

∫ 𝑡

0
𝜆𝑖 (𝑠)𝑑𝑠. (4.33)

Denote 𝑏𝑖 = 𝑏𝑖 (𝑡) and 𝑐𝑖 =
∫ 𝑡

0 𝜆𝑖 (𝑠)𝑑𝑠. Then 𝑏1 ≥ . . . ≥ 𝑏𝑛, while condition (4.29)
holds true thanks to (4.33). Set 𝜑(𝑡) = 𝑒2𝑡 , a convex increasing function. According
to (4.30),

𝑛∑︁
𝑖=1

𝑒2𝑏𝑖 (𝑡 ) ≤
𝑛∑︁
𝑖=1

exp
(
2
∫ 𝑡

0
𝜆𝑖 (𝑠)𝑑𝑠

)
.

Recalling that 𝑒2𝑏1 (𝑡 ) , . . . , 𝑒2𝑏𝑖 (𝑡 ) are the eigenvalues of 𝑀∗
𝑡 𝑀𝑡 , the lemma follows.

To summarize, thus far we obtained the following:

Corollary 4.13. For any centered, compactly-supported, log-concave probability meas-
ure 𝜇 and 𝑡 > 0,

Var𝜇 ( |𝑥 |2) ≤
𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥2
𝐻−1 (𝜇) ≤

1
𝑡2

·
𝑛∑︁
𝑖=1

E exp
(
2
∫ 𝑡

0
𝜆𝑖 (𝑠)𝑑𝑠

)
,

where
1
𝑡
≥ 𝜆1(𝑡) ≥ 𝜆2(𝑡) ≥ . . . ≥ 𝜆𝑛 (𝑡) > 0

are the eigenvalues of the covariance matrix 𝐴𝑡 of the probability density

𝑝𝑡 = 𝑝𝑡 ,𝐺𝑡 (0) .

Let 𝜇 be an isotropic, log-concave probability measure in R𝑛 with density 𝑝. It is
an exercise to show that for proving the thin-shell theorem we may approximate 𝜇 and
assume that 𝑝 is continuous and compactly-supported.

Recall that for 𝑡 ≥ 0 and 𝑦 ∈ R𝑛 we consider the probability density

𝑝𝑡 ,𝑦 (𝑥) = 𝑒𝑦 ·𝑥−𝑡 |𝑥 |
2/2−Λ𝑡 (𝑦) 𝑝(𝑥) (𝑥 ∈ R𝑛) (4.34)

where
Λ𝑡 (𝑦) = log

∫
R𝑛

𝑒𝑦 ·𝑥−𝑡 |𝑥 |
2/2𝑝(𝑥)d𝑥

is a normalizing factor. The barycenter and covariance of 𝑝𝑡 ,𝑦 are given by

𝑎𝑡 (𝑦) = ∇Λ𝑡 (𝑦) =
∫
R𝑛

𝑥𝑝𝑡 ,𝑦 (𝑥)d𝑥 ∈ R𝑛
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and
𝐴𝑡 (𝑦) = ∇2Λ𝑡 (𝑦) = Cov(𝑝𝑡 ,𝑦) ∈ R𝑛×𝑛.

We would also need the symmetric 3-tensor

∇3Λ𝑡 (𝑦) =
∫
R𝑛

(𝑥 − 𝑎𝑡 (𝑦))⊗3𝑝𝑡 ,𝑦 (𝑥)d𝑥 ∈ R𝑛×𝑛×𝑛.

Recall that 𝑝𝑡 ,𝑦 is 𝑡-uniformly log-concave, i.e.,∇2(− log 𝑝𝑡 ,𝑦) ≥ 𝑡 · Id for almost every
𝑦 ∈ R𝑛. One of our main proof ingredients is the following:

Lemma 4.14. Let 𝑡 > 0 and suppose that 𝑋 is a centered, 𝑡-uniformly log-concave ran-
dom vector inR𝑛. Let 𝜆1, . . . , 𝜆𝑛 ≥ 0 be the eigenvalues of Cov(𝑋) and let 𝑢1, . . . , 𝑢𝑛 ∈
R𝑛 be a corresponding orthonormal basis of eigenvectors. Abbreviate 𝑋𝑖 = ⟨𝑋, 𝑢𝑖⟩.
Then for 1 ≤ 𝑘 ≤ 𝑛 and 𝑠 > 0,

𝑛∑︁
𝑖, 𝑗=1

(E𝑋𝑖𝑋 𝑗𝑋𝑘)21{𝜆𝑖∨𝜆 𝑗≤𝑠} ≤ 4𝑡−1/2𝑠3/2𝜆𝑘 , (4.35)

where 𝑎 ∨ 𝑏 = max{𝑎, 𝑏}, i.e., in (4.35) we only sum over 𝑖, 𝑗 with max{𝜆𝑖 , 𝜆 𝑗 } ≤ 𝑠.

Proof. Write 𝐸 ⊆ R𝑛 for the subspace spanned by the vectors 𝑢𝑖 for which 𝜆𝑖 ≤ 𝑠. Let
𝑃𝑟𝑜 𝑗𝐸 be the orthogonal projection operator onto 𝐸 in R𝑛. Denote

𝑌 = 𝑃𝑟𝑜 𝑗𝐸𝑋.

It follows from the Prékopa-Leindler inequality that𝑌 is also 𝑡-uniformly log-concave,
and

∥Cov(𝑌 )∥𝑜𝑝 ≤ 𝑠.
The improved log-concave Lichnerowicz inequality thus implies that the Poincaré con-
stant of 𝑌 , denoted by 𝐶𝑃 (𝑌 ), satisfies

𝐶𝑃 (𝑌 ) ≤
√︂
𝑠

𝑡
. (4.36)

Set
𝐻 = E [𝑋𝑘𝑌 ⊗ 𝑌 ] ∈ R𝑛×𝑛.

By the definition of the subspace 𝐸 ,
𝑛∑︁

𝑖, 𝑗=1
(E𝑋𝑖𝑋 𝑗𝑋𝑘)21{𝜆𝑖∨𝜆 𝑗≤𝑠} = Tr(𝐻2) (4.37)

Moreover, by using (4.36) and the Poincaré inequalitry,

Var(⟨𝐻𝑌,𝑌⟩) ≤ 𝐶𝑃 (𝑌 ) · E|2𝐻𝑌 |2 ≤ 4𝑡−1/2𝑠1/2 · Tr(𝐻2Cov(𝑌 ))
≤ 4𝑡−1/2𝑠3/2 · Tr𝐻2. (4.38)
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On the other hand, since E𝑋𝑘 = 0, the Cauchy-Schwarz inequality shows that

Tr(𝐻2) = E𝑋𝑘 ⟨𝐻𝑌,𝑌⟩ ≤ (E𝑋2
𝑘)

1/2 · (Var⟨𝐻𝑌,𝑌⟩)1/2

= 𝜆
1/2
𝑘

·
√︁

Var⟨𝐻𝑌,𝑌⟩. (4.39)

From (4.38) and (4.39), √︁
Var⟨𝐻𝑌,𝑌⟩ ≤ 4𝑡−1/2𝑠3/2𝜆

1/2
𝑘
. (4.40)

The conclusion of the lemma follows from (4.37), (4.39) and (4.40).

Let (𝑊𝑡 )𝑡≥0 be a standard Brownian motion in R𝑛 with 𝑊0 = 0. Consider the
stochastic process (𝜃𝑡 )𝑡≥0 from the last lecture, for whose definition we offer two
alternatives:

(1) The first option is to introduce a random vector 𝑋 in R𝑛 with law 𝜇, independ-
ent of the Brownian motion (𝑊𝑡 )𝑡≥0, and set

𝜃𝑡 = 𝑡𝑋 +𝑊𝑡 .

(2) The second option is to uniquely define (𝜃𝑡 )𝑡≥0 via the integral equation

𝜃𝑡 =

∫ 𝑡

0
𝑎𝑠 (𝜃𝑠)d𝑠.

The two options coincide in law, as we have seen last week. Write F𝑡 for the 𝜎-algebra
generated by (𝜃𝑠)0≤𝑠≤𝑡 . When we say that 𝜏 is a stopping time we mean that for any
𝑡 > 0, the event {𝜏 ≤ 𝑡} is measurable with respect to F𝑡 . Denote

𝑝𝑡 = 𝑝𝑡 , 𝜃𝑡 , 𝑎𝑡 = 𝑎𝑡 (𝜃𝑡 ), 𝐴𝑡 = 𝐴𝑡 (𝜃𝑡 ), Λ𝑡 = Λ𝑡 (𝜃𝑡 )

and write
1
𝑡
≥ 𝜆1(𝑡) ≥ 𝜆2(𝑡) ≥ . . . ≥ 𝜆𝑛 (𝑡) > 0 (4.41)

for the eigenvalues of the covariance matrix 𝐴𝑡 , repeated according to their multiplicity.
Since 𝜇 is isotropic, at 𝑡 = 0 we have 𝐴0 = Id and hence

𝜆1(0) = 𝜆2(0) = . . . = 𝜆𝑛 (0) = 1.

For any 𝑘 , the eigenvalue 𝜆𝑘 (𝑡) equals 1 at time 𝑡 = 0, and it is smaller than 1 at any
time 𝑡 > 1. In the interval (0, 1), however, the eigenvalue 𝜆1(𝑡) is typically very large,
see the example in the exercise below. In view of Corollary 9.10 from last week, the
missing ingredient in the proof of the thin-shell theorem along the lines of [40] is the
following:
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Proposition 4.15. We have

𝑛∑︁
𝑘=1

E exp
(
2
∫ 1

0
𝜆𝑘 (𝑡)d𝑡

)
≤ 𝐶𝑛,

where 𝐶 > 0 is a universal constant.

The proof of Proposition 4.15 relies on the following proposition, which is a
straightforward variant of a recent breakthrough bound by Guan [27].

Proposition 4.16. For any 𝑡 > 0 and any stopping time 𝜏,

1
𝑛

𝑛∑︁
𝑘=1

P (𝜆𝑘 (𝑡 ∧ 𝜏) ≥ 3) ≤ 𝐶𝑒−1/𝑡𝛼 ,

where 𝑎 ∧ 𝑏 = min{𝑎, 𝑏} and where 𝐶, 𝛼 > 0 are universal constants.

It is conceivable that 𝛼 = 1 in Proposition 4.16, see [28]. Proposition 4.16 tells us
that while a single eigenvalue may explode at some time 𝑡 ∈ (0, 1), it is unlikely that
many eigenvalues are simultaneously large.

Proof of Proposition 4.15 assuming Proposition 4.16. For 𝑘 = 1, . . . , 𝑛 consider the
stopping time

𝜏𝑘 = inf {𝑡 > 0 ; 𝜆𝑘 (𝑡) ≥ 3} .

For any fixed 𝑡 > 0 and 𝑖 = 1, . . . , 𝑘 , under the event 𝜏𝑘 ≤ 𝑡 we have

𝜆𝑖 (𝑡 ∧ 𝜏𝑘) ≥ 𝜆𝑘 (𝑡 ∧ 𝜏𝑘) ≥ 3.

Hence, for 𝑖 = 1, . . . , 𝑘 ,

P (𝜏𝑘 ≤ 𝑡) ≤ P (𝜆𝑖 (𝑡 ∧ 𝜏𝑘) ≥ 3) .

By adding these 𝑘 inequalities and using Proposition 4.16, for any 𝑡 > 0,

P (𝜏𝑘 ≤ 𝑡) ≤
1
𝑘

𝑘∑︁
𝑖=1

P (𝜆𝑖 (𝑡 ∧ 𝜏𝑘) ≥ 3) ≤ 1
𝑘

𝑛∑︁
𝑖=1

P (𝜆𝑖 (𝑡 ∧ 𝜏𝑘) ≥ 3)

≤ 𝐶 𝑛
𝑘

exp(−1/𝑡𝛼). (4.42)

Recall that 𝛼 > 0 is a universal constant. It follows from (4.42) that

E𝜏−2
𝑘 ≤ 𝐶

(
1 + log

𝑛

𝑘

)2/𝛼
. (4.43)
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Indeed, in view of (4.42) inequality (4.43) clearly holds if 𝑘 ≥ 𝑛/2. For 𝑘 < 𝑛/2 we
obtain from (4.72) that for 𝑠 ≥ 22/𝛼,

P

(
𝜏−2
𝑘(

log 𝑛
𝑘

)2/𝛼 ≥ 𝑠
)
≤ 𝐶 𝑛

𝑘
exp(−𝑠𝛼/2 · log

𝑛

𝑘
) = 𝐶

( 𝑛
𝑘

)1−𝑠𝛼/2

≤ 𝐶𝑒−𝑐̃𝑠𝛼/2
.

By integrating over 22/𝛼 ≤ 𝑠 < ∞ we obtain (4.43) . Consequently, since 𝜆𝑘 (𝑡) ≤ 1/𝑡,∫ 1

0
𝜆𝑘 (𝑡)d𝑡 ≤ 3(𝜏𝑘 ∧ 1) +

∫ 1

𝜏𝑘∧1

d𝑡
𝑡
≤ 3 − log(𝜏𝑘 ∧ 1). (4.44)

Therefore, by (4.43) and (4.44),

E
𝑛∑︁
𝑘=1

exp
(
2
∫ 1

0
𝜆𝑘 (𝑡)d𝑡

)
≤ 𝑒6 · E

𝑛∑︁
𝑘=1

E
[
𝜏−2
𝑘 ∨ 1

]
≤ 𝐶

𝑛∑︁
𝑘=1

E[𝜏−2
𝑘 + 1]

≤ 𝐶𝑛 · 1
𝑛

𝑛∑︁
𝑘=1

(
1 + log

𝑛

𝑘

)2/𝛼
≤ 𝐶̃𝑛, (4.45)

where the last passage follows from the fact that the function (1 + log(1/𝑥))2/𝛼 is
monotone and integrable in [0, 1], and the Riemann sum in (4.45) may be bounded by
the integral.

The proof of Proposition 4.16 requires rather elaborate analysis of the time evol-
ution of the eigenvalues of the covariance matrix 𝐴𝑡 . Write

𝜉𝑖 𝑗 (𝑡) = (𝜉𝑖 𝑗1(𝑡), 𝜉𝑖 𝑗2(𝑡) . . . , 𝜉𝑖 𝑗𝑛 (𝑡)) ∈ R𝑛

where

𝜉𝑖 𝑗𝑘 (𝑡) =
∫
R𝑛

⟨𝑥 − 𝑎𝑡 , 𝑢𝑖⟩ · ⟨𝑥 − 𝑎𝑡 , 𝑢 𝑗⟩ · ⟨𝑥 − 𝑎𝑡 , 𝑢𝑘⟩𝑝𝑡 (𝑥)d𝑥 ∈ R,

with 𝑢1(𝑡), . . . , 𝑢𝑛 (𝑡) ∈ R𝑛 being any orthonormal basis of eigenvectors of 𝐴𝑡 corres-
ponding to the eigenvalues 𝜆1(𝑡) ≥ . . . ≥ 𝜆𝑛 (𝑡). Let us fix a stopping time 𝜏.

Lemma 4.17. For any smooth, increasing function 𝑓 : [0,∞) → R and almost any
𝑡 > 0,

𝑑

𝑑𝑡
E

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖 (𝑡 ∧ 𝜏)) ≤
1
2

𝑛∑︁
𝑖, 𝑗=1

E
[
|𝜉𝑖 𝑗 (𝑡) |2

𝑓 ′ (𝜆𝑖 (𝑡)) − 𝑓 ′ (𝜆 𝑗 (𝑡))
𝜆𝑖 (𝑡) − 𝜆 𝑗 (𝑡)

· 1{𝑡<𝜏}

]
, (4.46)

where we interpret the quotient by continuity as 𝑓 ′′ (𝜆𝑖 (𝑡)) when𝜆𝑖 (𝑡) =𝜆 𝑗 (𝑡). Moreover,
the function that is differentiated on the left-hand side of (4.46) is absolutely continu-
ous in 𝑡 ∈ [0,∞).



64

The expression in the right-hand side of (4.46) is reminiscent of the Daleckii-Krein
formula for the second derivative of matrix functions. For a function 𝑓 : R → R and
a symmetric matrix 𝐴 whose spectral decomposition is

𝐴 =

𝑛∑︁
𝑖=1

𝜆𝑖𝑢𝑖 ⊗ 𝑢𝑖

for numbers 𝜆1, . . . , 𝜆𝑛 ∈ R and an orthonormal basis 𝑢1, . . . , 𝑢𝑛 ∈ R𝑛 we write

𝑓 (𝐴) =
𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖)𝑢𝑖 ⊗ 𝑢𝑖 .

The Daleckii-Krein formula states that for any two symmetric matrices 𝐴, 𝐻 ∈ R𝑛×𝑛,
as 𝜀 → 0,

Tr 𝑓 (𝐴 + 𝜀𝐻) = Tr 𝑓 (𝐴) + 𝜀 · Tr[ 𝑓 ′ (𝐴)𝐻] + 𝜀2

2
· Tr[(𝐵 ◦ 𝐻)𝐻] + 𝑜(𝜀2)

where ◦ is the Schur product or Hadamard product (i.e., entry-wise product), and

𝐵 =

𝑛∑︁
𝑖, 𝑗=1

𝑓 ′ (𝜆𝑖) − 𝑓 ′ (𝜆 𝑗)
𝜆𝑖 − 𝜆 𝑗

𝑢𝑖 ⊗ 𝑢 𝑗 .

For 𝑣 = (𝑣1, . . . , 𝑣𝑛) ∈ R𝑛 we write (∇3Λ𝑡 )𝑣 ∈ R𝑛×𝑛 for the symmetric matrix whose
𝑖, 𝑗 entry is [

(∇3Λ𝑡 )𝑣
]
𝑖 𝑗
=

𝑛∑︁
𝑘=1

Λ𝑡 ,𝑖 𝑗𝑘𝑣𝑘

where Λ𝑡 = (Λ𝑡 ,𝑖 𝑗𝑘)𝑖, 𝑗 ,𝑘=1,...,𝑛. Lemma 4.17 follows from the following identity:

Lemma 4.18. For any smooth function 𝑓 : [0,∞) → R and almost any 𝑡 > 0,

𝑑

𝑑𝑡
E

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖 (𝑡 ∧ 𝜏)) =
1
2

𝑛∑︁
𝑖, 𝑗=1

E
[
|𝜉𝑖 𝑗 (𝑡) |2

𝑓 ′ (𝜆𝑖 (𝑡)) − 𝑓 ′ (𝜆 𝑗 (𝑡))
𝜆𝑖 (𝑡) − 𝜆 𝑗 (𝑡)

· 1{𝑡<𝜏}

]
− E

[
𝑛∑︁
𝑖=1

𝜆2
𝑖 (𝑡) 𝑓 ′ (𝜆𝑖 (𝑡)) · 1{𝑡<𝜏}

]
.

Moreover, the function that is differentiated is absolutely-continuous in 𝑡 ∈ [0,+∞).

Proof. We will prove this lemma by using Itô calculus and the “first option” above for
the definition of (𝜃𝑡 )𝑡≥0, i.e.,

𝜃𝑡 = 𝑡𝑋 +𝑊𝑡 .

Recall from last week that for some Brownian motion (𝐵𝑡 )𝑡≥0 we have

𝑑𝜃𝑡 = 𝑑𝐵𝑡 + 𝑎𝑡𝑑𝑡 (4.47)
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and that
𝑝𝑡 = 𝑝𝑡 , 𝜃𝑡

is the conditional law of 𝑋 given (𝜃𝑠)0≤𝑠≤𝑡 . Recall that F𝑡 is the 𝜎-algebra generated
by (𝜃𝑠)0≤𝑠≤𝑡 . Hence, for any continuous test function 𝜑 : R𝑛 → R,∫

R𝑛

𝜑𝑝𝑡 = E [𝜑(𝑋) |F𝑡 ] . (4.48)

The stochastic process on the left-hand side of (4.48) is a martingale, since it represents
conditional expectations with respect to a non-decreasing family of𝜎-algebras. In fact,
since 𝑝 is compactly-supported and continuous, it follows that for any 𝑥 ∈ R𝑛,

(𝑝𝑡 (𝑥))𝑡≥0 (4.49)

is a martingale as well. Recalling that

𝑝𝑡 (𝑥) = 𝑒𝜃𝑡 ·𝑥−𝑡 |𝑥 |
2/2−Λ𝑡 (𝜃𝑡 ) 𝑝(𝑥)

we may apply the Itô formula based on (4.47) and obtain the evolution equation of the
martingale (4.49), namely

𝑑𝑝𝑡 (𝑥) = ⟨𝑥 − 𝑎𝑡 , 𝑑𝐵𝑡⟩𝑝𝑡 (𝑥). (4.50)

It follows from (4.50) that

𝑑𝑎𝑡 = 𝑑

[∫
R𝑛

𝑥𝑝𝑡 (𝑥)d𝑥
]
=

∫
R𝑛

𝑥⟨𝑥 − 𝑎𝑡 , 𝑑𝐵𝑡⟩𝑝𝑡 (𝑥)d𝑥 = 𝐴𝑡𝑑𝐵𝑡 .

Thus,
𝑑 (𝑎𝑡 ⊗ 𝑎𝑡 ) = (𝐴𝑡𝑑𝐵𝑡 ⊗ 𝑎𝑡 + 𝑎𝑡 ⊗ 𝐴𝑡𝑑𝐵𝑡 ) + 𝐴2

𝑡 𝑑𝑡

and consequently,

𝑑𝐴𝑡 = 𝑑

[∫
R𝑛

(𝑥 ⊗ 𝑥)𝑝𝑡 (𝑥)d𝑥
]
− 𝑑 [𝑎𝑡 ⊗ 𝑎𝑡 ] = (∇3Λ𝑡 )𝑑𝐵𝑡 − 𝐴2

𝑡 𝑑𝑡.

Hence, for any stopping time 𝜏,

𝑑𝐴𝑡∧𝜏 = 1{𝑡<𝜏} ·
[
(∇3Λ𝑡 )𝑑𝐵𝑡 − 𝐴2

𝑡 𝑑𝑡
]
.

Consequently,

𝑑Tr 𝑓 (𝐴𝑡∧𝜏) = 1{𝑡<𝜏} · Tr
[
𝑓 ′ (𝐴𝑡 ) (∇3Λ𝑡 )𝑑𝐵𝑡 − 𝑓 ′ (𝐴𝑡 )𝐴2

𝑡 𝑑𝑡 +
1
2
𝐷𝑡𝑑𝑡

]
, (4.51)

where the Itô term equals

𝐷𝑡 =

𝑛∑︁
𝑖, 𝑗=1

|𝜉𝑖 𝑗 (𝑡) |2
𝑓 ′ (𝜆𝑖 (𝑡)) − 𝑓 ′ (𝜆 𝑗 (𝑡))

𝜆𝑖 (𝑡) − 𝜆 𝑗 (𝑡)
,
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thanks to the Daleckii-Krein formula. By taking expectation the 𝑑𝐵𝑡 term in (4.51)
vanishes, completing the proof.

Since the measure 𝜇 is compactly-supported, there exists 𝑅 > 0 depending on 𝜇
such that

|𝜉𝑖 𝑗 (𝑡) | ≤ 𝑅 for all 𝑖, 𝑗 and 𝑡 ≥ 0.

It is an instructive exercise to use Lemma 4.17 with 𝑓 (𝑥) = 𝑒𝛽𝑥 in order to prove that
for all 0 < 𝑡 < 𝑐𝜇,

P(𝜆1(𝑡 ∧ 𝜏) ≥ 2) ≤ 𝑒−𝑐̃𝜇/𝑡 (4.52)

for some constants 𝑐𝜇, 𝑐𝜇 > 0 depending on the compactly-supported measure 𝜇.

Our next goal is to use Lemma 4.17 and prove a bootstrap estimate for a certain
class of functions considered by Guan [27], which generalizes the class of functions
𝑓 (𝑡) = 𝑡𝑞 (𝑞 ≥ 3) considered in Chen [16].

Lemma 4.19. Let 𝐷 > 1, 𝑟 ∈ [2, 3], 𝑡 > 0 and let 𝜏 be a stopping time. Suppose that
𝑓 : [0,∞) → [0,∞) is a smooth, increasing function such that{

𝑓 (𝑥) = 𝑥2, ∀𝑥 ≥ 𝑟
𝑓 ′′ (𝑥) ≤ 𝐷2 𝑓 (𝑥), ∀𝑥 ≥ 0

(4.53)

Then, for almost any 𝑡 > 0,

𝑑

𝑑𝑡
E

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖 (𝑡 ∧ 𝜏)) ≤ 𝐶
(

1
𝑡
+ 𝐷2

√
𝑡

)
· E

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖 (𝑡 ∧ 𝜏)). (4.54)

where 𝐶 > 0 is a universal constant.

Proof. Abbreviate 𝜆𝑖 = 𝜆𝑖 (𝑡) and 𝜉𝑖 𝑗 = 𝜉𝑖 𝑗 (𝑡). Since 𝑓 is positive, by Lemma 4.17 it
suffices to prove that

𝑛∑︁
𝑖, 𝑗=1

|𝜉𝑖 𝑗 |2
𝑓 ′ (𝜆𝑖) − 𝑓 ′ (𝜆 𝑗)

𝜆𝑖 − 𝜆 𝑗
≤ 𝐶

(
1
𝑡
+ 𝐷2

√
𝑡

)
·
𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖). (4.55)

Since the probability density 𝑝𝑡 is 𝑡-uniformly log-concave, Lemma 4.14 shows that
for any 𝑠 > 0 and 𝑘 = 1, . . . , 𝑛,

𝑛∑︁
𝑖, 𝑗=1

𝜉2
𝑖 𝑗𝑘1{𝜆𝑖∨𝜆 𝑗≤𝑠} ≤ 4𝑡−1/2𝑠3/2𝜆𝑘 . (4.56)

The bound (4.55) follows from several applications of (4.56) as well as from the bound

𝜆𝑖 ≤ 1/𝑡
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which was discussed in (4.41).

Step 1. Since 𝜉𝑖 𝑗𝑘 is symmetric in 𝑖, 𝑗 and 𝑘 , by using (4.56) with 𝑠 = 𝜆𝑖 we see
that

𝑛∑︁
𝑖, 𝑗=1

|𝜉𝑖 𝑗 |21{𝜆𝑖≥𝑟 } =
∑︁
𝑖, 𝑗 ,𝑘

𝜉2
𝑖 𝑗𝑘1{𝜆𝑖≥𝑟 } ≤ 3

∑︁
𝑖

1{𝜆𝑖≥𝑟 }
∑︁
𝑗 ,𝑘

𝜉2
𝑖 𝑗𝑘1{𝜆 𝑗∨𝜆𝑘≤𝜆𝑖 } (4.57)

≤ 12
√
𝑡

∑︁
𝑖

𝜆
5/2
𝑖

1{𝜆𝑖≥𝑟 } ≤
12
𝑡

∑︁
𝑖

𝜆2
𝑖 1{𝜆𝑖≥𝑟 } ≤

12
𝑡

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖).

Step 2. Consider the contribution to the left-hand side of (4.55) of all 𝑖, 𝑗 with

min{𝜆𝑖 , 𝜆 𝑗 } ≥ 𝑟. (4.58)

Since 𝑓 ′ (𝑥) = 2𝑥 when 𝑥 ≥ 𝑟, this contribution equals

𝑛∑︁
𝑖, 𝑗=1

𝑓 ′ (𝜆𝑖) − 𝑓 ′ (𝜆 𝑗)
𝜆𝑖 − 𝜆 𝑗

|𝜉𝑖 𝑗 |21{min(𝜆𝑖 ,𝜆 𝑗 )≥𝑟 } = 2
∑︁
𝑖, 𝑗

|𝜉𝑖 𝑗 |21{min(𝜆𝑖 ,𝜆 𝑗 )≥𝑟 }

≤ 2
∑︁
𝑖, 𝑗

|𝜉𝑖 𝑗 |21{𝜆𝑖≥𝑟 } ≤
24
𝑡
,

where we used (4.57) in the last passage.

Step 3. Consider the contribution to the left-hand side of (4.55) of all 𝑖, 𝑗 with

𝜆𝑖 ≤ 𝑟, 𝜆 𝑗 ≥ 𝑟 + 1 or 𝜆 𝑗 ≤ 𝑟, 𝜆𝑖 ≥ 𝑟 + 1. (4.59)

This contribution equals

2
𝑛∑︁

𝑖, 𝑗=1

𝑓 ′ (𝜆𝑖) − 𝑓 ′ (𝜆 𝑗)
𝜆𝑖 − 𝜆 𝑗

|𝜉𝑖 𝑗 |21{𝜆𝑖≥𝑟+1}1{𝜆 𝑗≤𝑟 }

≤
∑︁
𝑖, 𝑗

4𝜆𝑖
𝜆𝑖 − 𝜆 𝑗

|𝜉𝑖 𝑗 |21{𝜆𝑖≥𝑟+1}1{𝜆 𝑗≤𝑟 } ≤ 16
∑︁
𝑖, 𝑗

|𝜉𝑖 𝑗 |21{𝜆𝑖≥𝑟 } ≤
16 · 12
𝑡

Here we used that 𝑓 ′ ≥ 0 as well as the fact that 𝜆𝑖/(𝜆𝑖 − 𝜆 𝑗) ≤ 𝑟 + 1 ≤ 4 when 𝜆 𝑗 ≤ 𝑟
and 𝜆𝑖 ≥ 𝑟 + 1, and in the last passage we used (4.57).

Step 4. Let us show that

𝑛∑︁
𝑖, 𝑗=1

|𝜉𝑖 𝑗 |2 𝑓 (𝜆𝑖)1{𝜆𝑖∨𝜆 𝑗≤𝑟+1} ≤
𝐶
√
𝑡

𝑛∑︁
𝑘=1

𝑓 (𝜆𝑘). (4.60)
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Write 𝑎 ∨ 𝑏 ∨ 𝑐 = max{𝑎, 𝑏, 𝑐}. By applying (4.56) with 𝑠 = 𝑟 + 1, and recalling that
𝑟 ≤ 3,

𝑛∑︁
𝑖, 𝑗 ,𝑘=1

𝑓 (𝜆𝑖)𝜉2
𝑖 𝑗𝑘1{𝜆𝑖∨𝜆 𝑗∨𝜆𝑘≤𝑟+1} (4.61)

≤ 4
√
𝑡

∑︁
𝑖

𝑓 (𝜆𝑖) · (𝑟 + 1)3/2𝜆𝑖 · 1{𝜆𝑖≤𝑟+1} ≤
47/2
√
𝑡

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖).

Next, we use that if 𝜆𝑖 ≤ 𝑟 + 1 then 𝑓 (𝜆𝑖) ≤ 𝑓 (𝑟 + 1) = (𝑟 + 1)2 ≤ 16 while if 𝜆𝑖 ≥ 𝑟 + 1
then 𝑓 (𝜆𝑖) = 𝜆2

𝑖
. We again apply (4.56) with 𝑠 = 𝑟 + 1 to obtain

𝑛∑︁
𝑖, 𝑗 ,𝑘=1

𝑓 (𝜆𝑖)𝜉2
𝑖 𝑗𝑘1{𝜆𝑖∨𝜆 𝑗≤𝑟+1≤𝜆𝑘 } ≤

𝐶
√
𝑡

∑︁
𝑘

𝜆𝑘1{𝜆𝑘≥𝑟+1} (4.62)

≤ 𝐶′
√
𝑡

∑︁
𝑘

𝜆2
𝑘1{𝜆𝑘≥𝑟+1} ≤

𝐶′
√
𝑡

𝑛∑︁
𝑘=1

𝑓 (𝜆𝑘).

By adding (4.61) and (4.62) we obtain (4.60).

Step 5. Consider the contribution to the left-hand side of (4.55) of all 𝑖, 𝑗 with

max{𝜆𝑖 , 𝜆 𝑗 } ≤ 𝑟 + 1. (4.63)

By using (4.53) and the fact that 𝑓 is non-negative and increasing, we see that this
contribution is at most

2
𝑛∑︁

𝑖, 𝑗=1

𝑓 ′ (𝜆𝑖) − 𝑓 ′ (𝜆 𝑗)
𝜆𝑖 − 𝜆 𝑗

|𝜉𝑖 𝑗 |21{𝜆 𝑗≤𝜆𝑖≤𝑟+1} ≤ 4𝐷2
∑︁
𝑖, 𝑗

𝑓 (𝜆𝑖) |𝜉𝑖 𝑗 |21{𝜆 𝑗≤𝜆𝑖≤𝑟+1}

≤ 𝐶 𝐷
2

√
𝑡

𝑛∑︁
𝑘=1

𝑓 (𝜆𝑘),

where we used (4.60) in the last passage.

The results of Step 2, Step 3 and Step 5 imply the desired bound (4.55).

It is a calculus exercise to prove that for any 𝑟 ∈ [2, 3] and 𝐷 > 1 there exists a
smooth, increasing function 𝑓 : [0,∞) → (0,∞) with

𝑓 (𝑥) =
{
𝑒𝐷 (𝑥−𝑟 ) 𝑥 ≤ 𝑟 − 1

𝐷

𝑥2 𝑥 ≥ 𝑟
(4.64)
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and 𝑓 ′′ (𝑥) ≤ 𝐷2 𝑓 (𝑥) for all 𝑥 ≥ 0. We denote this function 𝑓 by 𝑓𝑟 ,𝐷 , and observe that
it satisfies condition (4.53) of From Lemma 4.19. From the conclusion of the lemma
we conclude that for any 𝐷 > 1, 2 ≤ 𝑟 ≤ 3 and a stopping time 𝜏, if

0 < 𝑡 ≤ 𝐷−4 (4.65)

then 𝐷2/
√
𝑡 ≤ 1/𝑡 and hence for 𝑓 = 𝑓𝑟 ,𝐷

𝑑

𝑑𝑡
E

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖 (𝑡 ∧ 𝜏)) ≤
𝐶

𝑡
· E

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖 (𝑡 ∧ 𝜏)). (4.66)

The function 𝑓 = 𝑓𝑟 ,𝐷 is slightly complicated, and we prefer to reformulate the growth
condition (4.66) in terms of the much simpler function

𝑔𝑟 (𝑥) = 𝑥2 · 1{𝑥≥𝑟 } .

From (4.64),
𝑔𝑟 ≤ 𝑓𝑟 ,𝐷 . (4.67)

In the other direction, we claim that for any 𝐷 > 1 and 𝑥 ≥ 0, if

2 ≤ 𝑟 + 1
𝐷

≤ 𝑟 ≤ 3

then
𝑓𝑟 ,𝐷 (𝑥) ≤

9
4
𝑔𝑟 (𝑥) + exp(−𝐷 (𝑟 − 𝑟)). (4.68)

Indeed, if 𝑥 ≤ 𝑟 then by (4.64), since 𝑟 ≤ 𝑟 − 1/𝐷,

𝑓𝑟 (𝑥) ≤ 𝑓𝑟 (𝑟) = exp(−𝐷 (𝑟 − 𝑟)),

and (4.68) holds true in this case. If 𝑥 ≥ 𝑟 then both 𝑓𝑟 (𝑥) and 𝑔𝑟 (𝑥) equal 𝑥2, and
(4.68) trivially holds. In the remaining case 𝑟 < 𝑥 < 𝑟 we have

𝑓𝑟 (𝑥) ≤ 𝑓𝑟 (𝑟) = 𝑟2 ≤
(
𝑟

𝑟

)2
· 𝑥2 ≤ 9

4
𝑥2 =

9
4
𝑔𝑟 (𝑥),

completing the proof of (4.68).

Proof of Proposition 4.16. We may assume that 𝑡 ≤ 2−8 as otherwise there is nothing
to prove. We will set 𝑡0 = 𝑡 and partition the interval [0, 𝑡] into intervals

[𝑡1, 𝑡0], [𝑡2, 𝑡1], . . . , [𝑡𝑘+1, 𝑡𝑘], . . .

For 𝑘 ≥ 0 we define

𝑡𝑘 = 2−8𝑘𝑡, 𝐷𝑘 = 𝑡
−1/4
𝑘

, 𝑟𝑘 = 3 −
𝑘−1∑︁
𝑖=0

𝑡
1/8
𝑖

∈ [2, 3] .
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Since 𝑡𝑘 ≤ 𝐷−4
𝑘

we may use the differential inequality (4.66) for all 𝑠 ∈ [𝑡𝑘+1, 𝑡𝑘]. By
integrating this differential inequality over this interval, we obtain

E
𝑛∑︁
𝑖=1

𝑓𝑘 (𝜆𝑖 (𝑡𝑘 ∧ 𝜏)) ≤
(
𝑡𝑘

𝑡𝑘+1

)𝐶
E

𝑛∑︁
𝑖=1

𝑓𝑘 (𝜆𝑖 (𝑡𝑘+1 ∧ 𝜏)), (4.69)

where 𝑓𝑘 = 𝑓𝑟𝑘 ,𝐷𝑘
. Set also 𝑔𝑘 = 𝑔𝑟𝑘 and define

𝐹𝑘 = E
𝑛∑︁
𝑖=1

𝑓𝑘 (𝜆𝑖 (𝑡𝑘 ∧ 𝜏)) and 𝐺𝑘 = E
𝑛∑︁
𝑖=1

𝑔𝑘 (𝜆𝑖 (𝑡𝑘 ∧ 𝜏)).

Note that 𝑟𝑘+1 + 1/𝐷𝑘 ≤ 𝑟𝑘+1 + 1/
√
𝐷𝑘 = 𝑟𝑘 . From (4.69), as well as the two inequal-

ities (4.67) and (4.68), we obtain for 𝑘 ≥ 0,

𝐺𝑘 ≤ 𝐹𝑘 ≤
(
𝑡𝑘

𝑡𝑘+1

)𝐶
E

𝑛∑︁
𝑖=1

𝑓𝑟𝑘 ,𝐷𝑘
(𝜆𝑖 (𝑡𝑘+1 ∧ 𝜏))

≤
(
𝑡𝑘

𝑡𝑘+1

)𝐶
E

𝑛∑︁
𝑖=1

[
9
4
𝑔𝑘+1(𝜆𝑖 (𝑡𝑘+1 ∧ 𝜏)) + 𝑒−𝐷𝑘 (𝑟𝑘−𝑟𝑘+1 )

]
= 28𝐶

(
9
4
𝐺𝑘+1 + 𝑛 exp(−𝑡−1/8

𝑘
)
)
≤ 𝐶̄

[
𝐺𝑘+1 + 𝑛 exp(−2𝑘𝑡−1/8)

]
. (4.70)

From this recursive inequality we obtain that for 𝑘 ≥ 0,

𝐺0 ≤ 𝐶̄𝑘𝐺𝑘 + 𝑛 ·
𝑘−1∑︁
𝑖=0

𝐶̄𝑖+1 exp(−2𝑖𝑡−1/8) ≤ 𝐶̄𝑘𝐺𝑘 + 𝐶̃𝑛 · 𝑒−𝑡
−1/8
, (4.71)

since the sum in (4.71) is at most

𝑘−1∑︁
𝑖=0

𝐶̄𝑖+1 exp(−2𝑖𝑡−1/8) ≤
∞∑︁
𝑖=0

𝐶̄𝑖+1 exp(−2𝑖 − 𝑡−1/8) = 𝐶̄ · 𝑒−𝑡−1/8
.

We next show that 𝐶̄𝑘𝐺𝑘 −→ 0 as 𝑘 → ∞. To this end we use (4.52). Since 𝜇 is
compactly-supported, for some 𝐶𝜇 > 0 depending on 𝜇 and for a sufficiently large 𝑘 ,

𝐺𝑘 ≤ 𝐶𝜇 · P (𝜆1(𝑡𝑘 ∧ 𝜏) ≥ 2) ≤ 𝐶̃𝜇𝑒−𝑐𝜇/𝑡𝑘 = 𝐶̃𝜇𝑒
−𝑐𝜇 ·28𝑘/𝑡 .

Hence indeed 𝐶̄𝑘𝐺𝑘 −→ 0 as 𝑘 → ∞, and from (4.71),
𝑛∑︁
𝑖=0

P(𝜆𝑖 (𝑡 ∧ 𝜏) ≥ 3) ≤ 𝐺0 ≤ 𝐶̃𝑛 · 𝑒−𝑡−1/8
.
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We end this lecture with an interpretation of our results in the context of the
Prékopa-Leindler inequality. Recall that we write

𝛾𝑠 (𝑥) = (2𝜋𝑠)−𝑛/2 exp(−|𝑥 |2/(2𝑠))

for the density of a centered Gaussian random vector of covariance 𝑠 · Id in R𝑛. Let 𝑝
be an isotropic, log-concave density in R𝑛 and for 𝑡 > 0 set

𝑞𝑡 = 𝑝 ∗ 𝛾1/𝑡 .

By the Prékopa-Leindler inequality, the probability density 𝑞𝑡 is log-concave, since it is
a convolution of two log-concave probability measures. A straightforward computation
based on (4.34) shows that

∇2(− log 𝑞𝑡 ) (𝑥) = 𝑡2
(

Id
𝑡
− Cov(𝑝𝑡 ,𝑡 𝑥)

)
= 𝑡2

(
Id
𝑡
− 𝐴𝑡 (𝑡𝑥)

)
.

Thus the log-concavity of 𝑞𝑡 amounts to the inequality 𝐴𝑡 ≤ Id/𝑡, which was one of
the starting points of our analysis today. By using the “Option 1” definition of 𝜃𝑡 , we
see that for 𝑡 > 0,∫

R𝑛

���� Id𝑡 − ∇2(− log 𝑞𝑡 ) (𝑥)
𝑡2

����2 𝑞𝑡 (𝑥)d𝑥 = E|𝐴𝑡 |2 ≤ 𝐶𝑛 (4.72)

where | · | is the Hilbert-Schmidt norm, and where the last inequality in (4.72) follows
from Proposition 4.16. Thus, on a quantitative level, inequality (4.72) is a refinement
of the Prékopa-Leindler inequality which amounts to the pointwise bound

0 ≤ ∇2(− log 𝑞𝑡 ) ≤ 𝑡 · Id.

Exercises.

(1) Why can we assume that 𝜇 is compactly-supported when proving the thin-shell
theorem?

(2) prove that for any𝐷 > 1 and 𝑟 ∈ [2,3] there exists a smooth, increasing function
𝑓 : [0,∞) → [0,∞) satisfying (4.53).

(3) Consider the isotropic, log-concave probability density

𝑝(𝑥1, . . . , 𝑥𝑛) = 2𝑛𝑒−
∑𝑛

𝑖=1 2 |𝑥𝑖 | .

(a) Prove that in this case, for any 𝑡 > 0 the matrix 𝐴𝑡 is diagonal and its
diagonal entries are independent and identically-distributed. Write 𝑍𝑡 for
the (1, 1)-entry of 𝐴𝑡 , and explain that its law does not depend on 𝑛.
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(b) Prove that the support of the random variable 𝑍𝑡 is not uniformly bounded
for all 𝑡 ∈ (0, 1).

(c) Prove that if 𝑥 > 0 is such that P(𝑍𝑡 ≥ 𝑥) ≥ 1/𝑛, then E∥𝐴𝑡 ∥𝑜𝑝 ≥ 𝑥/2.
(d) Conclude that sup0<𝑡<1 E∥𝐴𝑡 ∥𝑜𝑝 ≥ 𝛼𝑛, for some sequence 𝛼𝑛 −→ ∞.

(4) Assume that 𝜇 is isotropic, compactly-supported probability measure in R𝑛.

(a) Use Lemma 4.17 and show that there exists 𝑅 = 𝑅𝜇 > 0 such that for a
convex, smooth, increasing function 𝑓 : [0,∞) → R, and almost all 𝑡 > 0,

𝑑

𝑑𝑡
E

𝑛∑︁
𝑖=1

𝑓 (𝜆𝑖 (𝑡)) ≤ 𝑅
𝑛∑︁

𝑖, 𝑗=1
E 𝑓 ′′ (𝜆𝑖 (𝑡)).

(b) For 𝛽 > 0 and 𝑡 > 0 define

𝐹𝛽,𝑡 =
1
𝛽

logE
𝑛∑︁
𝑖=1

𝑒𝛽𝜆𝑖 (𝑡 ) .

Prove that
𝐹𝛽,𝑡 ≤ 𝑡𝑅𝛽 +

log 𝑛
𝛽

+ 1.

(c) Write 𝑝 = P(𝜆1(𝑡) ≥ 2). Prove that for 𝛽 ≥ 2 log 𝑛,

log 𝑝 ≤ 𝑡𝑅𝛽2 − 𝛽

2
.

Set 𝛽 = 1/(4𝑡𝑅) and conclude that for a sufficiently small 𝑡 > 0,

P(𝜆1(𝑡) ≥ 2) ≤ exp(−𝑐𝜇/𝑡)

for some 𝑐𝜇 > 0 depending on 𝜇.
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