Mesures de Gibbs, Turbulence d’onde et EDP stochastiques

Europe/Paris
IBGBI building - Room A2 (Université Evry-Paris-Saclay)

IBGBI building - Room A2

Université Evry-Paris-Saclay

23 Bvd de France, 91037 Evry
Description

The workshop “Mesures de Gibbs, Turbulence d’onde et EDP stochastiques” will take place on December 15-17th, 2025, at University Evry-Paris-Saclay, IBGBI building. The topics include wave turbulence, Gibbs measures, and stochastic partial differential equations, with sessions covering both theoretical and numerical aspects. 

Registration is free but mandatory for logistical reasons.

Speakers:

Lundi 15 décembre - Mesure de Gibbs

  • Tony Lelièvre

  • Mickaël Latocca
  • Nicolas Camps

  • Antoine Mouzard

Mardi 16 décembre - Turbulence d’onde

  • Quentin Chauleur

  • Katja Vassilev
  • Angeliki Menegaki

  • Ricardo Grande

  • Annalaura Stingo

Mercredi 17 décembre - Schéma Numérique EDS/EDP Stochastiques

  • Charles-Edouard Bréhier
  • Arnaud Debussche
  • El Mehdi Haress
  • Katharina Schratz

 

Organisation : 

Anne-Sophie de Suzzoni

Ludovic Goudenège

This event is funded by the SSChern-Young Faculty Award and the CNRS.

 

 

logo_FX

    • 10:30
      Welcome Coffee Third floor IBGBI

      Third floor IBGBI

    • 1
      Tony Lelièvre Petit Amphi

      Petit Amphi

      Université Evry-Paris-Saclay

    • 12:00
      Repas IBIS

      IBIS

    • 2
      Mickaël Latocca : Gibbs measure for NLS on the 2 sphere, part I Petit Amphi

      Petit Amphi

      Université Evry-Paris-Saclay

      Orateur: Mickaël Latocca (Ecole Normale Supérieure (DMA), PSL Research University)
    • 3
      Nicolas Camps : Gibbs measure for NLS on the 2 sphere, part II Petit Amphi

      Petit Amphi

      Université Evry-Paris-Saclay

    • 15:35
      Coffee break Third floor of IBGBI

      Third floor of IBGBI

    • 4
      Antoine Mouzard : Anderson $\Phi_2^4$ and stochastic quantization Petit Amphi

      Petit Amphi

      Université Evry-Paris-Saclay

    • 09:30
      Welcome coffee Third floor of IBGBI

      Third floor of IBGBI

    • 5
      Quentin Chauleur : Wave turbulence and Kolmogorov spectra IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry

      In this introductory talk I will sketch the derivation of the wave kinetic equation, with a particular emphasis on Kolmogorov-Zhakarov spectra wich appear as particular stationary states of the system. I will also show some classical results on energy transfer mechanisms in Hamiltonian nonlinear dispersive models, alongside numerical simulations.

    • 6
      Katja Vassilev : One-dimensional wave-kinetic theory IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry

      Abstract: Wave kinetic equations have been rigorously derived up to the kinetic timescale from dispersive systems in dimension $d \geq 2$. In this talk, we address the question of deriving kinetic equations in dimension one. Similar to higher dimensional models, one may expand the solution into iterates, represented by Feynman diagrams. However, the combinatorial estimates needed to bound these diagrams are much worse in dimension one, leading to some of these diagrams diverging at times much shorter than $T_{\mathrm{kin}}$. We explain this phenomena for the MMT (Majda, McLaughlin, and Tabak) model, a 1D model encompassing a range of dispersion relations, including the case of the 1D NLS. In this case, the kinetic equation is trivial, so we will discuss the question of what the appropriate kinetic theory could be in this setting.

    • 12:05
      Lunch IBIS

      IBIS

    • 7
      Angeliki Menegaki : On the stability of Rayleigh--Jeans solutions for FPUT IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry
    • 8
      Ricardo Grande : Extreme waves and large deviations for 2D pure gravity deep water waves IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry

      We study the formation of extreme waves from a statistical viewpoint in the context of the pure gravity water wave equations in deep water. We quantify their probability under random Gaussian sea initial data up to the optimal timescales allowed by deterministic well-posedness theory. The proof shows that rogue waves most likely arise through “dispersive focusing”,
      where phase synchronization produces constructive amplification of the water crest.
      The main difficulty in justifying this mechanism is propagating statistical information
      over such long timescales, which we overcome by combining normal forms and
      probabilistic methods. Unlike previous results, this novel approach does not require
      approximate solutions to be Gaussian. This is a joint work with M. Berti, A. Maspero and G. Staffilani.

    • 15:35
      Coffee break Third floor of IBGBI

      Third floor of IBGBI

    • 9
      Annalaura Stingo : Trivial resonances for a system of Klein-Gordon equations and applications in wave turbulence IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry
    • 19:30
      Conference dinner IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry
    • 10
      Charles-Edouard Bréhier : Some structure-preserving schemes for SPDEs IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry

      I will present several topics on numerical methods for SPDEs, where standard schemes do not preserve important qualitative features of the solution. Precisely, I will show the construction and analysis of positivity, regularity and asymptotic preserving schemes for some SPDEs.

    • 11
      Arnaud Debussche : Stochastic primitive equations with transport noise and weak hydrostatic assumption IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry

      We investigate the convergence of solutions of a stochastic 3D Navier-Stokes equations to those of the primitive
      equations. We explore the impact of relaxing the hydrostatic assumption in the stochastic primitive equations by
      retaining martingale terms as deviations from hydrostatic equilibrium. This modified model, obtained through a
      specific asymptotic scaling accessible only within the stochastic framework, captures non-hydrostatic effects while
      remaining within the primitive equations formalism. We prove that it provides a higher-order approximation of the 3D
      stochastic Navier-Stokes equations.

    • 10:40
      Coffee break Third floor of IBGBI

      Third floor of IBGBI

    • 12
      El Mehdi Haress IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry
    • 13
      Katharina Schratz : Resonances as a computational tool IBGBI building - Room A2

      IBGBI building - Room A2

      Université Evry-Paris-Saclay

      23 Bvd de France, 91037 Evry
    • 13:00
      Repas IBIS

      IBIS