SEED Seminar

Point of a $\psi^4_d$ Fermionic Theory: Anomalous Exponent and Scaling Operators

par Giuseppe Scola (SISSA, Trieste)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres CS40001 91893 Bures-sur-Yvette Cedex
Description

Seed Seminar of Mathematics and Physics

Fall' 25: Random Forests and Fermionic Field Theories 

We consider the Renormalization Group (RG) fixed-point theory associated with a fermionic $\psi^4_d$ model in d=1,2,3 with fractional kinetic term, whose scaling dimension is fixed so that the quartic interaction is weakly relevant in the RG sense. The model is defined in terms of a Grassmann functional integral with interaction $V^*$, solving a fixed-point RG equation in the presence of external fields, and a fixed ultraviolet cutoff. We define and construct the field and density scale-invariant response functions, and prove that the critical exponent of the former is the naive one, while that of the latter is anomalous and analytic. We construct the corresponding (almost-)scaling operators, whose two point correlations are scale-invariant up to a remainder term, which decays like a stretched exponential at distances larger than the inverse of the ultraviolet cutoff. Our proof is based on constructive RG methods and, specifically, on a convergent tree expansion for the generating function of correlations, which generalizes the approach developed by three of the authors in a previous publication (Giuliani et al. in JHEP 01:026, 2021. doi.org/10.1007/JHEP01(2021)026). CMP 406.10 (2025): 257, joint work with A. Giuliani, V. Mastropietro and S. Rychkov.

========

Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.

Organisé par

Matteo D’Achille (LMO)
Aymane El Fardi (EIGSI)
Veronica Fantini (LMO)
Emmanuel Kammerer (CMAP)
Sophie Mutzel (LPENS & CAS)
Junchen Rong (CPhT)
Francesco Russo (CPhT)

Contact