Séminaire Géométrie et groupes discrets

Stable Maps and a Universal Hitchin Component

par Max Riestenberg (MPIMS Leipzig)

Europe/Paris
Amphithéâtre Léon Motchane (IHES)

Amphithéâtre Léon Motchane

IHES

Le Bois Marie 35, route de Chartres CS 40001 91893 Bures-sur-Yvette Cedex
Description

Let X be a pinched Cartan-Hadamard manifold, and Y a symmetric space of non-compact type. We define a notion of stability for coarse Lipschitz maps f : X → Y, and show that every stable map from X to Y is at bounded distance from a unique harmonic map. As an application, we extend any positive quasi-symmetric map from RP1 to the flag variety of SL(n,R), to a harmonic map from H2 to the symmetric space of SL(n,R). This allows us to define a universal Hitchin component in the style suggested by Labourie and Fock-Goncharov. This is all joint work with Peter Smillie.

 

Organisé par

Fanny Kassel

Contact