An explicit construction of the maximal extension of a globally hyperbolic conformally flat spacetime.
par
The physical theory of general relativity suggests that our universe is modelized by a four dimensional manifold equipped with a metric of signature (-,+,+,+), called Lorentzian metric, which satisfies Einstein equations. In 1969, Choquet-Bruhat and Geroch established the existence of a unique maximal development of a given initial data for the Einstein equations. These solutions fit within the general framework of globally hyperbolic spacetimes. There is a partial order relation on globally hyperbolic spacetimes. Following the work of Choquet-Bruhat and Geroch, the questions of the existence and the uniqueness of a maximal extension of a globally hyperbolic spacetime arise naturally. In this talk, I will discuss these questions in the context of globally hyperbolic conformally flat spacetimes. In 2013, C. Rossi positively answered both questions in this specific context. However, her proof has the unsatisfactory feature that it does not provide any description of the maximal extension. I will present an alternative, constructive proof of this result. This approach is based on the concept of enveloping space, within which the maximal extension will be realized. After defining the enveloping space, I will illustrate this concept with some examples.