Suite à une maintenance de notre service d'hébergement, ce site indico ne sera pas accessible à partir du mardi 8 juillet soir. Le service reprendra progressivement dans l'après midi du mercredi 9 juillet et jeudi 10 juillet

by Natalie Evans (King’s College London, Royaume-Uni)

Europe/Paris
Salle Grisvard, IHP, Paris

Salle Grisvard, IHP, Paris

Description

The Hardy-Littlewood generalised twin prime conjecture states an asymptotic formula for the number of primes $p\le X$ such that $p+h$ is prime where $h$ is any non-zero even integer. While this conjecture remains wide open, Matomäki, Radziwiłł and Tao proved that it holds on average over $h$, improving on a previous result of Mikawa. In this talk we will discuss an almost prime analogue of the Hardy-Littlewood conjecture for which we can go beyond what is known for primes. We will describe some recent work in which we prove an asymptotic formula for the number of almost primes $n=p_1p_2 \le X$ such that $n+h$ has exactly two prime factors which holds for a very short average over $h$.

Organized by

Régis de la Bretèche
Cathy Swaenepoel