Choisissez le fuseau horaire
Le fuseau horaire de votre profil:
Among 3-dimensional sets of given Newtonian capacity, which shape minimizes the q-th moment (q>0) of electrostatic equilibrium measure? One readily shows it is the ball. But what if the set is confined to the plane? A centered disk is then the natural minimizer, yet the proof is quite different and involves a cylindrical variant of Baernstein’s star-function. The approach succeeds when 0 <q <= 2. Higher moments (q>2) remain a tantalizing open problem, as do the analogous questions for Riesz equilibrium measures.
Note: this talk does not assume any previous knowledge about capacities.
(Joint work with Carrie Clark, Univ. of Illinois Urbana–Champaign.)