Seminar on Quantum Modularity and Resurgence
Quantizing the mirror curve of a toric Calabi-Yau threefold gives rise to quantum-mechanical operators. Their fermionic spectral traces produce factorially divergent power series in the Planck constant and its inverse, which are conjecturally captured by the Nekrasov-Shatashvili and standard topological strings via the TS/ST correspondence. In this talk, I will discuss a general conjecture on the resurgence of these dual asymptotic series, and I will present a proven exact solution in the case of the first spectral trace of local $P^2$. A remarkable number-theoretic structure underpins the resurgent properties of the weak and strong coupling expansions and paves the way for new insights relating them to quantum modular forms. Finally, I will mention how these results fit into a broader paradigm linking resurgence and quantum modularity. This talk is based on arXiv:2212.10606 and further work with V. Fantini (available soon).
========
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_mathematique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Veronica Fantini & Campbell Wheeler