2d Conformal Field Theories on Magic Triangle
par
Amphithéâtre Léon Motchane
IHES
The magic triangle due to Cvitanovic and Deligne-Gross is an extension of the Freudenthal-Tits magic square of semisimple Lie algebras. In a recent work with Kimyeong Lee, we identify all 2d rational conformal field theories associated to the magic triangle. These include various Wess-Zumino-Witten models, Virasoro minimal models, compact bosons and their non-diagonal modular invariants. At level one, we find a two-parameter family of modular linear differential equation of fourth order whose solutions produce the affine characters of all elements in the magic triangle. We find a universal coset relation for the whole triangle which generalizes the dual pairs with respect to (E8)_1 in the Cvitanovic-Deligne exceptional series. At level two, we find a special row of the triangle - the subexceptional series has novel N=1 supersymmetry, and the super characters satisfy a one-parameter family of fermionic modular linear differential equations. Moreover, we find many new coset constructions involving WZW models at higher levels.
Pour être informé des prochains séminaires vous pouvez vous abonner à la liste de diffusion en écrivant un mail à sympa@listes.math.cnrs.fr avec comme sujet: "subscribe seminaire_physique PRENOM NOM"
(indiquez vos propres prénom et nom) et laissez le corps du message vide.
Julio Parra-Martinez & Giovanni Rizi