Séminaire d'Homotopie et Géométrie Algébrique

K-theoretic Gromov-Witten theory of GIT quotients

par Xiaohan YAN (Sorbonne Université)

Europe/Paris
IMT 1R2 207 (Salle Pellos)

IMT 1R2 207

Salle Pellos

Description

The K-theoretic Gromov-Witten (KGW) theory gives deformation invariants of a complex variety by counting curves. It is related to the more classical Gromov-Witten (GW) theory via the Grothendieck-Riemann-Roch theorem. In this talk, I discuss the use of abelian/non-abelian correspondence in studying the KGW theory of GIT quotients. It gives a solution of the genus-zero KGW invariants of flag varieties, and interacts with structural results like the « quantum » version of Lefschetz theorem and of Serre duality. I also discuss potential further applications of the method.