Séminaire de Systèmes Dynamiques

Masur-Veech Volumes at for flat surfaces with integral conical singularities.

par Adrien Sauvaget (Institut de mathématiques de Toulouse)

Europe/Paris
Bat 1R2 (Salle 207)

Bat 1R2

Salle 207

Description
I will present an open conjecture expressing the Masur-Veech volume of moduli spaces of flat surfaces and k-translation surfaces as the integral of a cohomology class. This conjecture is proven in certain cases, but I will discuss the content of this conjecture in terms the number of large geodesics for a generic surface. This is an example of the broader problem of describing isomonodromic foliations by cohomological techniques.