

Setting

Main result

Application

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numerics

An explicit Euler scheme with strong rate of convergence for non-Lipschitz SDEs Second Young researchers meeting on BSDEs, Numerics and Finance, Bordeaux

Ivo Mihaylov

8 July, 2014

Joint work with J.-F. Chassagneux and A. Jacquier

Introduction	Setting	Main result	Applications	Numerics
	(Content		

- **2** Setting
- 3 Main result

Continuous-time random dynamics on \mathbb{R} for $t \in [0, T]$:

$$dX_t = \mu(X_t)dt + \sigma(X_t)dW_t \qquad X_0 = x_0 \tag{1}$$

where

- drift and diffusion, $\mu, \sigma : \mathbb{R} \to \mathbb{R}$
- W is a Brownian motion
- Assumption: we have a unique strong solution.

Convergence results for discretisation schemes: Maruyama [Mar55], Milstein [Mil75], Kloeden & Platen [KP92] Setting

Main result

Explicit Euler Scheme I

 μ and σ are globally Lipschitz: $\exists K > \mathsf{0} \text{ such that } \forall x, y \in \mathbb{R}$

$$|\mu(x) - \mu(y)| + |\sigma(x) - \sigma(y)| \le K|x - y|$$

Fix $n \in \mathbb{N}^+$, consider partition $\pi = \{0 = t_0 < t_1 < \ldots < t_n = T\}$.

Definition (Explicit Euler Scheme)

Equidistant discretisation, h = T/n,

$$\hat{X}_{t_{i+1}} = \hat{X}_{t_i} + \mu(\hat{X}_{t_i})h_{i+1} + \sigma(\hat{X}_{t_i})\Delta W_{i+1}, \qquad \hat{X}_0 = x_0,$$

where $h_{i+1} = t_{i+1} - t_i$ and $\Delta W_{i+1} = W_{t_{i+1}} - W_{t_i}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Setting

Main result

Applications

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerics

Explicit Euler Scheme II

Definition

For p > 0, define $||Z||_p := \mathbb{E}\left[|Z|^p\right]^{\frac{1}{p}}$.

Linear interpolation defines \hat{X} for all $t \in [0, T]$.

Theorem (Lipschitz drift and diffusion [KP92]) $\max_{t \in [0,T]} ||X_t - \hat{X}_t||_2 \le Ch^{1/2}.$

Rate of strong convergence 1/2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-classical SDEs

Moving away from the classical setting:

- SDE solution taking values in some domain, D (typically we will consider $D = (0, \infty)$);
- drift or diffusion not globally Lipschitz continuous.

Definition (One-sided Lipschitz continuous)

A function f is one-sided Lipschitz continuous in D if for all $x, y \in D$, then $(x - y)(f(x) - f(y)) \leq K(x - y)^2$.

Approaches:

- Localisation: A modification of scheme, say, |x| for $D = (0, \infty)$ and monotonic drift [Gyö98];
- Implicit scheme: Strong convergence rate, when drift is one-sided Lipschitz, locally Lipschitz, and we have finite moments for process [HMS02].

Setting

Main result

Numerics

Some more Euler schemes

Definition (Symmetrised Euler scheme [BD04])

$$\hat{X}_{t_{i+1}} = |\hat{X}_{t_i} + \mu(\hat{X}_{t_i})h_{i+1} + \sigma(\hat{X}_{t_i})\Delta W_{i+1}|, \qquad \hat{X}_0 = x_0.$$

Definition (Implicit-Euler scheme [Alf13, NS12])

$$\hat{X}_{t_{i+1}} = \hat{X}_{t_i} + \mu(\hat{X}_{t_{i+1}})h_{i+1} + \sigma(\hat{X}_{t_i})\Delta W_{i+1}, \qquad \hat{X}_0 = x_0.$$

Definition (Tamed-Euler scheme [HJK12])

$$\hat{X}_{t_{i+1}} = \hat{X}_{t_i} + \frac{\mu(\hat{X}_{t_i})h_{i+1}}{1 + |\mu(\hat{X}_{t_i})|h_{i+1}} + \sigma(\hat{X}_{t_i})\Delta W_{i+1}, \qquad \hat{X}_0 = x_0.$$

Main result

Setting

- Shift non-Lipschitz behaviour from the diffusion to the drift.
- Apply Lamperti-style transformation Y = F(X) to (1):

$$dY_t = f(Y_t)dt + \gamma(Y_t)dW_t, \qquad Y_0 = y_0 > 0.$$

Assumption (First assumptions)

- The solution stays in domain $D = (0, \infty)$, almost surely;
- f is globally one-sided Lipschitz;
- *f* is locally Lipschitz: $x, y \in D$, then $|f(x) - f(y)| \le K(1 + |x|^{\alpha} + |y|^{\alpha} + \frac{1}{|x|^{\beta}} + \frac{1}{|y|^{\beta}})|x - y|;$
- γ is Lipschitz continuous on D.

- For a closed interval C ⊂ R, define p_C : R → C as the projection operator onto C;
- domain D_n = [n^{-k}, n^{k'}] ⊆ D with strictly positive k, k' (possibly infinite);
- projection map $p_n := p_{D_n}$, such that $p_n : \mathbb{R} \to D_n$ where

$$p_n(x) \equiv n^{-k} \lor x \land n^{k'}, \qquad k, k' > 0.$$
(2)

Clearly, p_n is one-Lipschitz;

• closure of domain D, $\bar{D} = [0, \infty)$ defines the projection $p_{\bar{D}}$.

Setting

Main result

Application

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Numerics

Scheme

We now introduce our explicit scheme:

Definition (Explicit Euler scheme with projection map)

Set $\hat{Y}_0 = Y_0$ and for $i = 0, \dots, n-1$,

$$\hat{Y}_{i+1} := \hat{Y}_i + f_n(\hat{Y}_i)h_{i+1} + ar{\gamma}_n(\hat{Y}_i)\Delta W_{i+1},$$

with
$$f_n \equiv f \circ p_n$$
 and $\bar{\gamma}_n \equiv \gamma \circ p_{\bar{D}}$.

Remark

f_n is Lipschitz continuous with Lipschitz constant

$$L(n) = 2K(1 + n^{k\beta} + n^{k'\alpha}).$$

Setting

Main result

Applications

Numerics

Regularity assumptions

Assumption (Scheme constants)

Set constants k, k' such that $2\beta k \leq 1$ and $2\alpha k' \leq 1$.

Assumption (Weaker conditions)

There exists $q' > 2(\alpha + 1)$ and $q > 2\beta$ such that $\mathbb{E}(|Y_t|^{q'})$ and $\mathbb{E}(|Y_t|^{-q})$ are finite for all $t \in [0, T]$.

Assumption (Stronger conditions)

Above hold; in addition drift function f is of class $C^2(D)$, and

$$\sup_{t\in[0,T]} \mathbb{E}|\gamma(Y_t)f'(Y_t)|^2 + \sup_{t\in[0,T]} \mathbb{E}\left|f'(Y_t)f(Y_t) + \frac{\gamma^2(Y_t)}{2}f''(Y_t)\right|^2$$

is finite.

roduction

Setting

Main result

Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numerics

Preliminary bounds on process

Lemma (Bounds using Weaker assumptions)

For any $t \in [0, T]$, the following inequalities hold:

•
$$\mathbb{E}|Y_t - p_n(Y_t)|^2 \le C\left(\frac{1}{n^{(q+2)k}} + \frac{1}{n^{(q'-2)k'}}\right) =: K_1(n);$$

•
$$\mathbb{E}|f(Y_t) - f_n(Y_t)|^2 \leq C\left(\frac{1}{n^{k(q-2(\beta-1))}} + \frac{1}{n^{k'(q'-2(\alpha+1))}}\right) =: K_2(n).$$

Setting

Main result

Regularity

Definition (Regularity of process X)

Given partition $\pi,$ we define the regularity of a process as

$$\mathcal{R}_{\pi}[X] := \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E}|X_t - X_{t_i}|^2 \mathrm{d}t.$$

Lemma (Process regularity)

If our weaker assumptions hold, then

• $\mathcal{R}_{\pi}[Y] \leq Ch$ and $\mathcal{R}_{\pi}[f(Y)] \leq C(L(n)^{2}h + K_{2}(n)).$

Furthermore, assume the stronger conditions hold, then

• $\mathcal{R}_{\pi}[f(Y)] \leq Ch.$

Define the discretisation error as $\delta Y_i := Y_{t_i} - \hat{Y}_{t_i}$. Combine the preliminary bounds and regularity:

Setting

Main result

Application

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Numerics

Main theorem

Theorem (Convergence result)

Assume that the weaker assumptions hold. Then

$$\max_{i=0,\ldots,n} \mathbb{E}|\delta Y_i|^2 \leq C \left(K_2(n) + \mathcal{R}_{\pi}[f(Y)] + \mathcal{R}_{\pi}[Y] \right).$$

Setting

Main result

Applications

Numerics

Theorem (Convergence result (continued))

Furthermore, the following holds:

$$\max_{i=0,\ldots,n} \|\delta Y_i\|_2 \leq C_{q,q'} h^r,$$

with

r = min(¹/₂ - ^β/_{q+2}, ¹/₂ - ^α/_{q'-2}) > 0 under the weak assumptions by setting (k, k') = (¹/_{q+2}, ¹/_{q'-2})
r = min(¹/₂, ^{q+2}/_{4β} - ¹/₂, ^{q'-2}/_{4α} - ¹/₂) > 0 under the strong assumptions by setting (k, k') = (¹/_{2β}, ¹/_{2α}).

Setting

Main result

Applications

Numerics

Modifications of scheme

Definition (Domains \overline{D}_{η} and \widecheck{D}_{ζ})

- Domain $ar{D}_\eta := [\eta,\infty)$, and $p_{ar{D}_\eta}: \mathbb{R} o ar{D}_\eta;$
- Interval $\check{D}_{\zeta} := [0, \zeta]$, and $p_{\check{D}_{\zeta}} : \mathbb{R} \to \check{D}_{\zeta}$.

For all
$$i \leq n$$
, we define $\overline{Y}_{t_i} := p_{\overline{D}}(\hat{Y}_{t_i})$, $\widetilde{Y}_{t_i} := p_{\overline{D}\eta}(\hat{Y}_{t_i})$ and $\check{Y}_{t_i} := p_{\breve{D}_{\zeta}}(\hat{Y}_{t_i})$, for some $\eta, \zeta > 0$.

Corollary (Modified schemes)

In the setting of the main theorem, we have $\max_{i=0,\dots,n} \left(\|Y_{t_i} - \bar{Y}_{t_i}\|_2 + \|Y_{t_i} - \tilde{Y}_{t_i}\|_2 + \|Y_{t_i} - \check{Y}_{t_i}\|_2 \right) \leq C_{q,q'}h^r ,$ where $(\tilde{Y}_{t_i})_{i \leq n}$ and $(\check{Y}_{t_i})_{i \leq n}$, we set $\eta = h^{2r/q}$ and $\zeta = h^{-2r/(q'-2)}$. iction

Setting

Main result

Application

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Numerics

First order convergence

Proposition (First order convergence for constant diffusion)

 $\gamma(x) \equiv \gamma > 0$ for all $x \in D$, and stronger assumptions holds, with $q > 6\beta - 2$ and $q' > 6\alpha + 2$. Then, $\max_{i=0,...,n} \|\delta Y_i\|_2 \leq C_{q,q'}h$.

Setting

Main result

Application

Numerics

Moment properties of the schemes

Lemma (Modified scheme)

Under the weak assumptions, then $\max_{i=0,...,n} \mathbb{E}\left[|\hat{Y}_{t_i}|^2\right] \leq C_{q,q'}$.

Proposition

• If weak assumptions holds, then $\max_{i=0,...,n} \mathbb{E}\left[\check{Y}_{t_i}^{p'}\right] \leq C_{p',q'}$ for all $p' \in [1, q'/2]$;

2 if weak assumptions hold with $q \ge 4$, then $\max_{i=0,...,n} \mathbb{E}\left[\tilde{Y}_{t_i}^{-p}\right] \le C_{p,q}$ for all $p \in [1, q/2 - 1]$.

Applications

Convergence of scheme for SDEs widely used in literature:

- Locally smooth coefficients (CIR/CEV families included);
- 3/2 process;
- Ait-Sahalia process.

Strategy:

- Verify assumptions on true process after a Lamperti transformation
 - 1 process stays in domain D, a.s.;
 - 2 drift being one-sided Lipschitz and locally Lipschitz (α and β);
 - **3** diffusion being Lipschitz continuous.
- Conditions on the scheme to fix k and k';
- Verify additional assumptions (finite moment and inverse moments of the true process, smoothness of drift f, ...).

Main result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A) Locally smooth coefficients

Consider the stochastic differential equation

$$\mathrm{d}X_t = \mu(X_t)\mathrm{d}t + \gamma x^\nu \mathrm{d}W_t \qquad X_0 = x_0 > 0$$

where

• drift
$$\mu(x) \equiv \mu_1(x) - \mu_2(x)x$$
 with $\mu_1, \mu_2: D \to \mathbb{R}$;

- $\gamma > 0$ and $\nu \in [1/2, 1]$;
- Three distinct cases: $\nu = 1/2$, $\nu \in (1/2, 1)$ and $\nu = 1$;
- Locally smooth coefficients: CIR, CEV families included.

A) Assumptions and corollary

Assumption

Functions μ_1, μ_2 are bounded and belong to the class $C_b^2(D)$.

1) If
$$\nu \in (1/2, 1)$$
, then $\mu_1(0) > 0$;

2 If
$$\nu = 1/2$$
, then there exists $\bar{x} > 0$ such that $\omega := 2\mu_1(x)/\gamma^2 \ge 1$ for all $0 < x < \bar{x}$.

In [DM11, Proposition 3.1] it is shown that the unique strong solution stays in $(0,\infty)$.

Corollary

For the corresponding assumptions above, then $\max_{\substack{i=0,...,n}} \|\delta Y_i\|_2 + \|\delta X_i\|_1 \le Ch^r$ 1 with r = 1/2; 2 with $r = 1/2 - 1/\omega > 0$ if $3 < \omega \le 4$ and r = 1/2 if $\omega > 4$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

B) Ait-Sahalia model

Consider the stochastic differential equation

$$\mathrm{d}X_t = \left(\frac{a_{-1}}{X_t} - a_0 + a_1X_t - a_2X_t^r\right)\mathrm{d}t + \gamma X_t^{\rho}\mathrm{d}W_t \ , \quad X_0 = x_0 > 0,$$

Lamperti transformation yields process

$$dY_t = f(Y_t)dt + (1-\rho)\gamma dW_t$$
, $Y_0 = x_0^{1-\rho} > 0$,

where the drift function is

$$f(x) \equiv (1-\rho) \left(a_{-1} x^{\frac{-1-\rho}{1-\rho}} - a_0 x^{\frac{-\rho}{1-\rho}} + a_1 x - a_2 x^{\frac{-\rho+r}{1-\rho}} - \frac{\rho \gamma^2}{2} x^{-1} \right)$$

Corollary

Suppose that $r + 1 > 2\rho$ holds, then $\max_{i=0,\dots,n} \|\delta Y_i\|_2 \leq Ch^{1/2}$.

Numerical Results

We implement scheme and study strong rates of convergence achieved:

- CIR (compared to the implicit scheme in [DNS12, NS12]);
- Ginzburg-Landau (convergence and divergence for E-M scheme [HJK11]);
- **3** Ait-Sahalia (compared to a reference solution).

Absolute difference over *M* paths with $h := T/2^N$

$$rac{1}{M}\sum_{j=1}^{M}|X_{T}^{(j)}-\hat{X}_{T}^{(j)}|$$

where $\hat{X}_t^{(j)}$ is the E-M with projection approximation and $X_t^{(j)}$ is the true/reference solution (using the same Brownian motion path).

Setting

Main result

Applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Numerics

CIR Rates of convergence I

CIR process X with $\kappa, \theta, \xi > 0$ defined by

$$\mathrm{d}X_t = \kappa(\theta - X_t)\mathrm{d}t + \xi\sqrt{X_t}\mathrm{d}W_t, \qquad X_0 = x_0 > 0.$$

Lamperti-transformed process Y:

$$\mathrm{d}Y_t = \left(\frac{a}{Y_t} + bY_t\right)\mathrm{d}t + c\mathrm{d}W_t, \qquad Y_0 = \sqrt{x_0} > 0.$$

with $a = (4\kappa\theta - \xi^2)/8$, $b = -\kappa/2$, $c = \xi/2$.

n

Setting

Main result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CIR Rates of convergence II

Drift-implicit square-root Euler method [DNS12] has unique positive solution defined for $i = 0, \ldots, n-1$ by

$$\hat{Y}_{t_{i+1}} = rac{\hat{Y}_{t_i} + c \Delta W_{i+1}}{2(1 - bh_{i+1})} + \sqrt{rac{(\hat{Y}_{t_i} + c \Delta W_{i+1})^2}{4(1 - bh_{i+1})^2}} + rac{ah_{i+1}}{1 - bh_{i+1}},$$

We approximate the CIR process, X, by $\hat{X} = \hat{Y}^2$ and the discretisation error is

$$\delta X_i := X_{t_i} - \hat{X}_{t_i} = Y_{t_i}^2 - \hat{Y}_{t_i}^2.$$

.

Main result

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

CIR Rates of convergence III

- Parameters $(\kappa, \theta, \xi, T, x_0, M) = (0.125\omega, 1, 0.5, 1, 1, 10000);$
- $\omega = (1, 1.5, 2, 2.5, 3, 3.5, 4)$, and $2\kappa\theta/\xi^2 = \omega$;
- step sizes 2^N , for $N = 1, \ldots, 10$;
- reference solution uses N = 12.
- k = 1/4;
- Strong convergence with rate 1, as the Lamperti transformed CIR process has a constant diffusion.

<ロト <回ト < 注ト < 注ト

э

CIR Rates of convergence IV

Figure: CIR model: \mathcal{E} against number of steps (log₂ scale).

Ginzburg-Landau - Strong Convergence I

1-d G-L SDE [KP92, Chapter 4]

$$\mathrm{d}X_t = \left[-X_t^3 + \left(\alpha + \frac{1}{2}\sigma^2\right)X_t\right]\mathrm{d}t + \sigma X_t\mathrm{d}W_t, \quad X_0 = x_0 > 0,$$

with solution

$$X_t = \frac{X_0 \exp(\alpha t + \sigma W_t)}{\sqrt{1 + X_0^2 \int_0^t \exp(2\alpha s + 2\sigma W_s) ds}}$$

Special case of the Ait-Sahalia process with $(a_{-1}, a_0, a_1, a_2, r, \rho) = (0, 0, \alpha + 1/2\sigma^2, 1, 3, 1)$. Bounded positive moments and inverse moments since $r + 1 > 2\rho$ holds and the solution stays in the domain $D = (0, \infty)$ almost surely.

(日)、

э

Ginzburg-Landau - Strong Convergence II

- Parameters $(\sigma, \lambda, T, x_0, 10000) = (1, 1/2, 1, 1, 10000).$
- Strong convergence rate 1/2:

Figure: G-L model: average absolute error \mathcal{E} vs N (log₂ scale).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ginzburg-Landau - E-M Divergence I

- Consider an example for which Euler-Maruyama scheme diverges;
- Compare it to our explicit scheme;
- Parameters (σ, α, Τ, x₀, M) = (7, 0, 3, 1, 10000) as in [HJK11].
- The authors prove moment explosion for the Euler-Maruyama scheme, see [HJK11, Table 1].

э

Ginzburg-Landau - E-M Divergence II

Figure: Average absolute error \mathcal{E} vs number of steps (log₂ scale).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ginzburg-Landau - E-M Divergence III

- Both schemes eventually converge.
- However, for a range of step sizes, classical E-M scheme explodes [HJK11].
- Large errors and NaN are capped at 2^{20} for the E-M scheme.

Consider the Ait-Sahalia model, with parameters

$$(a_{-1}, a_0, a_1, a_2, \gamma, X_0) = (1, 1, 1, 1, 1, 1);$$

• $(r, \rho) = (2, 3/2);$
• $\alpha = 4$ and $\beta = 2;$
• $k = 1/(2\beta)$ and $k' = 1/(2\alpha)$, such that assumptions hold
Numerics: L^1 rate for X of 1.25

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Setting

Main result

Application

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Numerics

Further work

Extending our results to:

- discontinuous drift functions;
- multi-dimensional domains (e.g. $D = (0, \infty)^d$ or $D = \mathbb{R}^d$);
- singularities in the interior of D;
- Multilevel Monte Carlo.

Introduction	Setting	Main result	Applications	Numerics

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Thank you for listening

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bibliography I

A. Alfonsi.

Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process.

Statistics & Probability Letters, 83(2):602-607, 2013.

M. Bossy and A. Diop.

An efficient discretization scheme for one dimensional sdes with a diffusion coefficient of the form $|x|^{\alpha}$, $\alpha \in [1/2, 1]$. Technical report, INRIA working paper, 2004.

S. De Marco.

Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions.

The Annals of Applied Probability, 21:1282–1321, 2011.

oductio

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bibliography II

- S. Dereich, A. Neuenkirch, and L. Szpruch.
 - An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process.
 - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 468(2140):1105–1115, 2012.
 - I. Gyöngy.

A note on Euler's approximations.

Potential Analysis, 8(3):205-216, 1998.

M. Hutzenthaler, A. Jentzen, and P. Kloeden.

Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients.

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 467(2130):1563–1576, 2011.

Setting

Main result

Application

Numerics

Bibliography III

- M. Hutzenthaler, A. Jentzen, and P. Kloeden. Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. <u>The Annals of Applied Probability</u>, 22(4):1611–1641, 2012.
- D. Higham, X. Mao, and A. Stuart.
 Strong convergence of Euler-type methods for nonlinear stochastic differential equations.

SIAM Journal on Numerical Analysis, 40(3):1041–1063, 2002.

P. Kloeden and E. Platen.

Numerical solution of stochastic differential equations, volume 23. Springer Verlag, 1992.

Setting

Main result

Application

Numerics

Bibliography IV

G. Maruyama.

Continuous Markov processes and stochastic equations. Rendiconti del Circolo Matematico di Palermo, 4(1):48–90, 1955.

G. Milstein.

Approximate integration of stochastic differential equations. Theory of Probability & Its Applications, 19(3):557–562, 1975.

A. Neuenkirch and L. Szpruch.

First order strong approximations of scalar SDEs with values in a domain.

arXiv:1209.0390, 2012.