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Introduction

Continuous-time random dynamics on R for t ∈ [0,T ]:

dXt = µ(Xt)dt + σ(Xt)dWt X0 = x0 (1)

where

• drift and diffusion, µ, σ : R→ R
• W is a Brownian motion

• Assumption: we have a unique strong solution.

Convergence results for discretisation schemes:
Maruyama [Mar55], Milstein [Mil75], Kloeden & Platen [KP92]
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Explicit Euler Scheme I

µ and σ are globally Lipschitz: ∃K > 0 such that ∀x , y ∈ R

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ K |x − y |

Fix n ∈ N+, consider partition π = {0 = t0 < t1 < . . . < tn = T}.

Definition (Explicit Euler Scheme)

Equidistant discretisation, h = T/n,

X̂ti+1 = X̂ti + µ(X̂ti )hi+1 + σ(X̂ti )∆Wi+1, X̂0 = x0,

where hi+1 = ti+1 − ti and ∆Wi+1 = Wti+1 −Wti .
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Explicit Euler Scheme II

Definition

For p > 0, define ‖Z‖p := E [|Z |p]
1
p .

Linear interpolation defines X̂ for all t ∈ [0,T ].

Theorem (Lipschitz drift and diffusion [KP92])

maxt∈[0,T ] ‖Xt − X̂t‖2 ≤ Ch1/2.

Rate of strong convergence 1/2.
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Non-classical SDEs

Moving away from the classical setting:

• SDE solution taking values in some domain, D (typically we
will consider D = (0,∞));

• drift or diffusion not globally Lipschitz continuous.

Definition (One-sided Lipschitz continuous)

A function f is one-sided Lipschitz continuous in D if for all
x , y ∈ D, then (x − y)(f (x)− f (y)) ≤ K (x − y)2.

Approaches:

• Localisation: A modification of scheme, say, |x | for
D = (0,∞) and monotonic drift [Gyö98];

• Implicit scheme: Strong convergence rate, when drift is
one-sided Lipschitz, locally Lipschitz, and we have finite
moments for process [HMS02].
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Some more Euler schemes

Definition (Symmetrised Euler scheme [BD04])

X̂ti+1 = |X̂ti + µ(X̂ti )hi+1 + σ(X̂ti )∆Wi+1|, X̂0 = x0.

Definition (Implicit-Euler scheme [Alf13, NS12])

X̂ti+1 = X̂ti + µ(X̂ti+1)hi+1 + σ(X̂ti )∆Wi+1, X̂0 = x0.

Definition (Tamed-Euler scheme [HJK12])

X̂ti+1 = X̂ti +
µ(X̂ti )hi+1

1 + |µ(X̂ti )|hi+1

+ σ(X̂ti )∆Wi+1, X̂0 = x0.
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Setting

• Shift non-Lipschitz behaviour from the diffusion to the drift.

• Apply Lamperti-style transformation Y = F (X ) to (1):

dYt = f (Yt)dt + γ(Yt)dWt , Y0 = y0 > 0.

Assumption (First assumptions)

• The solution stays in domain D = (0,∞), almost surely;

• f is globally one-sided Lipschitz;

• f is locally Lipschitz: x , y ∈ D, then
|f (x)− f (y)| ≤ K (1 + |x |α + |y |α + 1

|x |β + 1
|y |β )|x − y |;

• γ is Lipschitz continuous on D.
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Projection

• For a closed interval C ⊂ R, define pC : R→ C as the
projection operator onto C;

• domain Dn = [n−k , nk
′
] ⊆ D with strictly positive k , k ′

(possibly infinite);

• projection map pn := pDn , such that pn : R→ Dn where

pn(x) ≡ n−k ∨ x ∧ nk
′
, k , k ′ > 0. (2)

Clearly, pn is one-Lipschitz;

• closure of domain D, D̄ = [0,∞) defines the projection pD̄ .
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Scheme

We now introduce our explicit scheme:

Definition (Explicit Euler scheme with projection map)

Set Ŷ0 = Y0 and for i = 0, . . . , n − 1,

Ŷi+1 := Ŷi + fn(Ŷi )hi+1 + γ̄n(Ŷi )∆Wi+1,

with fn ≡ f ◦ pn and γ̄n ≡ γ ◦ pD̄ .

Remark

fn is Lipschitz continuous with Lipschitz constant

L(n) = 2K (1 + nkβ + nk
′α).
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Regularity assumptions

Assumption (Scheme constants)

Set constants k, k ′ such that 2βk ≤ 1 and 2αk ′ ≤ 1.

Assumption (Weaker conditions)

There exists q′ > 2(α + 1) and q > 2β such that E(|Yt |q
′
) and

E(|Yt |−q) are finite for all t ∈ [0,T ].

Assumption (Stronger conditions)

Above hold; in addition drift function f is of class C2(D), and

sup
t∈[0,T ]

E|γ(Yt)f
′(Yt)|2 + sup

t∈[0,T ]
E
∣∣∣∣f ′(Yt)f (Yt) +

γ2(Yt)

2
f ′′(Yt)

∣∣∣∣2
is finite.



Introduction Setting Main result Applications Numerics

Preliminary bounds on process

Lemma (Bounds using Weaker assumptions)

For any t ∈ [0,T ], the following inequalities hold:

• E|Yt − pn(Yt)|2 ≤ C
(

1
n(q+2)k + 1

n(q′−2)k′

)
=: K1(n);

• E|f (Yt)− fn(Yt)|2 ≤ C
(

1
nk(q−2(β−1)) + 1

nk
′(q′−2(α+1))

)
=: K2(n).
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Regularity

Definition (Regularity of process X )

Given partition π, we define the regularity of a process as

Rπ[X ] :=
n−1∑
i=0

∫ ti+1

ti

E|Xt − Xti |
2dt.

Lemma (Process regularity)

If our weaker assumptions hold, then

• Rπ[Y ] ≤ Ch and Rπ[f (Y )] ≤ C (L(n)2h + K2(n)).

Furthermore, assume the stronger conditions hold, then

• Rπ[f (Y )] ≤ Ch.

Define the discretisation error as δYi := Yti − Ŷti . Combine the
preliminary bounds and regularity:
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Main theorem

Theorem (Convergence result)

Assume that the weaker assumptions hold. Then

max
i=0,...,n

E|δYi |2 ≤ C (K2(n) +Rπ[f (Y )] +Rπ[Y ]) .
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Theorem (Convergence result (continued))

Furthermore, the following holds:

max
i=0,...,n

‖δYi‖2 ≤ Cq,q′h
r ,

with

• r = min( 1
2 −

β
q+2 ,

1
2 −

α
q′−2 ) > 0 under the weak assumptions

by setting (k, k ′) = ( 1
q+2 ,

1
q′−2 )

• r = min( 1
2 ,

q+2
4β −

1
2 ,

q′−2
4α −

1
2 ) > 0 under the strong

assumptions by setting (k, k ′) = ( 1
2β ,

1
2α).
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Modifications of scheme

Definition (Domains D̄η and D̆ζ)

• Domain D̄η := [η,∞), and pD̄η
: R→ D̄η;

• Interval D̆ζ := [0, ζ], and pD̆ζ
: R→ D̆ζ .

For all i ≤ n, we define Ȳti := pD̄(Ŷti ), Ỹti := pD̄η
(Ŷti ) and

Y̆ti := pD̆ζ
(Ŷti ), for some η, ζ > 0.

Corollary (Modified schemes)

In the setting of the main theorem, we have

max
i=0,...,n

(
‖Yti − Ȳti‖2 + ‖Yti − Ỹti‖2 + ‖Yti − Y̆ti‖2

)
≤ Cq,q′h

r ,

where (Ỹti )i≤n and (Y̆ti )i≤n, we set η = h2r/q and ζ = h−2r/(q′−2).
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First order convergence

Proposition (First order convergence for constant diffusion)

γ(x) ≡ γ > 0 for all x ∈ D, and stronger assumptions holds, with
q > 6β − 2 and q′ > 6α + 2. Then, maxi=0,...,n ‖δYi‖2 ≤ Cq,q′h.
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Moment properties of the schemes

Lemma (Modified scheme)

Under the weak assumptions, then maxi=0,...,n E
[
|Ŷti |2

]
≤ Cq,q′ .

Proposition

1 If weak assumptions holds, then maxi=0,...,n E
[
Y̆ p′

ti

]
≤ Cp′,q′

for all p′ ∈ [1, q′/2];

2 if weak assumptions hold with q ≥ 4, then

maxi=0,...,n E
[
Ỹ−pti

]
≤ Cp,q for all p ∈ [1, q/2− 1].
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Applications

Convergence of scheme for SDEs widely used in literature:

• Locally smooth coefficients (CIR/CEV families included);

• 3/2 process;

• Ait-Sahalia process.

Strategy:

• Verify assumptions on true process after a Lamperti
transformation

1 process stays in domain D, a.s.;
2 drift being one-sided Lipschitz and locally Lipschitz (α and β);
3 diffusion being Lipschitz continuous.

• Conditions on the scheme to fix k and k ′;

• Verify additional assumptions (finite moment and inverse
moments of the true process, smoothness of drift f , . . . ).
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A) Locally smooth coefficients

Consider the stochastic differential equation

dXt = µ(Xt)dt + γxνdWt X0 = x0 > 0

where

• drift µ(x) ≡ µ1(x)− µ2(x)x with µ1, µ2 : D → R;

• γ > 0 and ν ∈ [1/2, 1];

• Three distinct cases: ν = 1/2, ν ∈ (1/2, 1) and ν = 1;

• Locally smooth coefficients: CIR, CEV families included.
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A) Assumptions and corollary

Assumption

Functions µ1, µ2 are bounded and belong to the class C2
b(D).

1 If ν ∈ (1/2, 1), then µ1(0) > 0;

2 If ν = 1/2, then there exists x̄ > 0 such that
ω := 2µ1(x)/γ2 ≥ 1 for all 0 < x < x̄ .

In [DM11, Proposition 3.1] it is shown that the unique strong
solution stays in (0,∞).

Corollary

For the corresponding assumptions above, then
max

i=0,...,n
‖δYi‖2 + ‖δXi‖1 ≤ Chr

1 with r = 1/2;

2 with r = 1/2− 1/ω > 0 if 3 < ω ≤ 4 and r = 1/2 if ω > 4.
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B) Ait-Sahalia model

Consider the stochastic differential equation

dXt =

(
a−1

Xt
− a0 + a1Xt − a2X

r
t

)
dt + γX ρ

t dWt , X0 = x0 > 0,

Lamperti transformation yields process

dYt = f (Yt)dt + (1− ρ)γdWt , Y0 = x1−ρ
0 > 0 ,

where the drift function is

f (x) ≡ (1−ρ)

(
a−1x

−1−ρ
1−ρ − a0x

−ρ
1−ρ + a1x − a2x

−ρ+r
1−ρ − ργ2

2
x−1

)
.

Corollary

Suppose that r + 1 > 2ρ holds, then maxi=0,...,n ‖δYi‖2 ≤ Ch1/2.



Introduction Setting Main result Applications Numerics

Numerical Results

We implement scheme and study strong rates of convergence
achieved:

1 CIR (compared to the implicit scheme in [DNS12, NS12]);

2 Ginzburg-Landau (convergence and divergence for E-M
scheme [HJK11]);

3 Ait-Sahalia (compared to a reference solution).

Absolute difference over M paths with h := T/2N

1

M

M∑
j=1

|X (j)
T − X̂

(j)
T |

where X̂
(j)
t is the E-M with projection approximation and X

(j)
t is

the true/reference solution (using the same Brownian motion
path).
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CIR Rates of convergence I

CIR process X with κ, θ, ξ > 0 defined by

dXt = κ(θ − Xt)dt + ξ
√
XtdWt , X0 = x0 > 0.

Lamperti-transformed process Y :

dYt =

(
a

Yt
+ bYt

)
dt + cdWt , Y0 =

√
x0 > 0.

with a = (4κθ − ξ2)/8, b = −κ/2, c = ξ/2.
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CIR Rates of convergence II

Drift-implicit square-root Euler method [DNS12] has unique
positive solution defined for i = 0, . . . , n − 1 by

Ŷti+1 =
Ŷti + c∆Wi+1

2(1− bhi+1)
+

√
(Ŷti + c∆Wi+1)2

4(1− bhi+1)2
+

ahi+1

1− bhi+1
,

We approximate the CIR process, X , by X̂ = Ŷ 2 and the
discretisation error is

δXi := Xti − X̂ti = Y 2
ti
− Ŷ 2

ti
.
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CIR Rates of convergence III

• Parameters (κ, θ, ξ,T , x0,M) = (0.125ω, 1, 0.5, 1, 1, 10000);

• ω = (1, 1.5, 2, 2.5, 3, 3.5, 4), and 2κθ/ξ2 = ω;

• step sizes 2N , for N = 1, . . . , 10;

• reference solution uses N = 12.

• k = 1/4;

• Strong convergence with rate 1, as the Lamperti transformed
CIR process has a constant diffusion.
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CIR Rates of convergence IV

Figure: CIR model: E against number of steps (log2 scale).
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Ginzburg-Landau - Strong Convergence I

1-d G-L SDE [KP92, Chapter 4]

dXt =

[
−X 3

t +

(
α +

1

2
σ2

)
Xt

]
dt + σXtdWt , X0 = x0 > 0,

with solution

Xt =
X0 exp(αt + σWt)√

1 + X 2
0

∫ t
0 exp(2αs + 2σWs)ds

.

Special case of the Ait-Sahalia process with
(a−1, a0, a1, a2, r , ρ) = (0, 0, α + 1/2σ2, 1, 3, 1). Bounded positive
moments and inverse moments since r + 1 > 2ρ holds and the
solution stays in the domain D = (0,∞) almost surely.
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Ginzburg-Landau - Strong Convergence II

• Parameters (σ, λ,T , x0, 10000) = (1, 1/2, 1, 1, 10000).

• Strong convergence - rate 1/2:

Figure: G-L model: average absolute error E vs N (log2 scale).
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Ginzburg-Landau - E-M Divergence I

• Consider an example for which Euler-Maruyama scheme
diverges;

• Compare it to our explicit scheme;

• Parameters (σ, α,T , x0,M) = (7, 0, 3, 1, 10000) as in [HJK11].

• The authors prove moment explosion for the Euler-Maruyama
scheme, see [HJK11, Table 1].
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Ginzburg-Landau - E-M Divergence II

Figure: Average absolute error E vs number of steps (log2 scale).
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Ginzburg-Landau - E-M Divergence III

• Both schemes eventually converge.

• However, for a range of step sizes, classical E-M scheme
explodes [HJK11].

• Large errors and NaN are capped at 220 for the E-M scheme.
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Ait-Sahalia

Consider the Ait-Sahalia model, with parameters
(a−1, a0, a1, a2, γ,X0) = (1, 1, 1, 1, 1, 1);

• (r , ρ) = (2, 3/2);

• α = 4 and β = 2;

• k = 1/(2β) and k ′ = 1/(2α), such that assumptions hold.

Numerics: L1 rate for X of 1.25



Introduction Setting Main result Applications Numerics

Further work

Extending our results to:

• discontinuous drift functions;

• multi-dimensional domains (e.g. D = (0,∞)d or D = Rd);

• singularities in the interior of D;

• Multilevel Monte Carlo.
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Thank you for listening
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