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Modelling approaches for dynamics forecasting

▶ Model-Based (MB) approaches: requires a deep understanding of the
underlying phenomenon, e.g. formalized by ODE/PDE

▶ Machine Learning (ML) / Deep Learning: more agnostic, now
state-of-the-art for several tasks, e.g. ConvLSTM [Shi et al., 2015],
NeuralODE [Chen et al., 2018]

▶ Hybrid ML/MB : cooperation between physical models and data,
historically data assimilation [Corpetti et al., 2009], new hot topic in ML
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Incorporating full physical knowledge in ML

Hybrid models combining MB and ML (gray box)

▶ A long-standing topic [Rico-Martinez et al., 1994]
▶ 2 main categories of methods:

Loss function regularization

Physics-informed neural networks
[Raissi, 2018]

Constraints in deep architectures

Advection-diffusion model
[de Bezenac et al., 2018]
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Focus: simplified physical models

Physical models: often approximations of real-world dynamics

▶ A complete description of a complex natural phenomenon is out of
reach, e.g. climate, earth modelling

▶ Approximations are made to make the numerical resolution
tractable, e.g. reduced-order models, resolution on coarse meshes
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Augmenting simplified physical models

▶ Let’s consider the dynamical system dXt

dt = F (Xt), F unknown
▶ We often have a rough physical prior model Fp, with unknown params θp

▶ We consider a linear augmentation: F = Fp + Fa
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Motivation: principled ML/MB decomposition

Issue: unconstrained decomposition dXt

dt = (Fp + Fa)(Xt) often ill-posed

▶ possibly an infinite number of solutions
▶ wrong identification of the physical parameters θp

Damped pendulum: d2θ
dt2 + ω2

0 sin θ + λdθ
dt = 0

MSE=1.1 10−1, Err T0=5.7% MSE=8.2 10−2, Err T0=12.4% MSE=1.5 10−2, Err T0=1.4%

Simplified physical model Unconstrained augmentation APHYNITY framework
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APHYNITY [ICLR’21]
Augmenting PHYsical models for ideNtIfying and forecasTing complex dYnamics

▶ The physical model Fp should explain the dynamics as much as possible
▶ The complete model F = Fp + Fa should perfectly explain the dynamics

APHYNITY objective:
F : normed vector space
Fp ⊂ F : space of physical models

min
Fp∈Fp,Fa∈F

∥Fa∥ subject to

∀X ∈ D,∀t, dXt

dt = (Fp + Fa)(Xt)

Theory: if Fp is a Chebyshev set1, the decomposition exists and is unique

1in finite dim spaces, closed convex sets
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APHYNITY - trajectory based training

▶ Parameterized models F
θp
p (θp physical parameters), F θa

a (θa deep NN)

APHYNITY trajectory-based relaxation:

min
Fp∈Fp,Fa∈F

∥Fa∥+ λ ED

[∫
t

∥Xt − X̃t∥dt
]

subject to

dX̃t

dt
= (Fp + Fa)(X̃t), X̃0 = X0

▶ Optimization with an increasing sequence of λ (variant of Uzawa algorithm)
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APHYNITY - experimental results

Experiments on 3 classes of physical phenomena:

▶ Damped pendulum: d2θ
dt2 + ω2

0 sin θ + λdθ
dt = 0

▶ Simplified Fp: Hamiltonian (energy conservation), ODE without λ

▶ Reaction-diffusion: ∂u
∂t

= a∆u+Ru(u, v; k), ∂v
∂t

= b∆v +Rv(u, v))
▶ Reaction terms: Ru(u, v; k) = u− u3 − k − v,Rv(u, v) = u− v
▶ Simplified Fp: PDE without reaction

▶ Damped wave: ∂2w
∂t2 − c2∆w + k ∂w

∂t = 0
▶ Simplified Fp: PDE without damping

All Fp are closed and convex in F ⇒ Chebyshev
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APHYNITY - quantitative results

APHYNITY successful complements simplified physical models for:
▶ better forecasting performances
▶ better physical parameter identification
▶ ∥Fa∥2 ∼ level of Fp physical approximation

Method log MSE %Err param. ∥Fa∥2

Incomplete
physics

Hamiltonian -0.35±0.10 n/a n/a
APHYNITY Hamiltonian -3.97±1.20 n/a 623
Param ODE (ω0) -0.14±0.10 13.2 n/a
APHYNITY Param ODE (ω0) -7.86±0.60 4.0 132

Complete
physics

True ODE -8.58±0.20 n/a n/a
APHYNITY True ODE -8.44±0.20 n/a 2.3
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APHYNITY - qualitative results

Figure: Predictions of u (top) and v for the reaction-diffusion equations.

Figure: Predictions on the damped wave equations.
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Model-Based RL with prior physical models

▶ NeurIPS 2022 Offline RL workshop

12/ 23 V. Le Guen - Deep augmented physical models



Model-Free v.s. Model-Based RL

Model-Free RL v.s. Model-Based RL
Directly learn a value
function/policy with samples

+ very flexible / good
performances
- need a lot of samples

Learn a transition model of the
world, then plan with the model

+ Sample efficient
- accuracy of the model has a
huge impact
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Model-Based Reinforcement Learning (MBRL)

△! In MBRL, model often refers to data-driven models !
⇒ In this work, physical models as prior
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Training the dynamical model

Training objective

minimize L(θ) = 1

|D|
∑

(st,at,st+1)∈D

∥ŝt+1 − st+1∥22 + α∥F θr
r ∥2

subject to
dst
dt

∣∣∣
t=t′

= (F θp
p + F θr

r )(st, at′).

15/ 23 V. Le Guen - Deep augmented physical models



Experimental setup

▶ 2 standard control tasks from OpenAI Gym

pendulum acrobot
S ∈ R2, A ∈ R S ∈ R4, A ∈ R2

▶ Simplified physical models: pendulum and acrobot equations
without friction
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Results - Pendulum
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Results - Acrobot
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Application to video prediction: PhyDNet [CVPR’20]
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Photovoltaic energy forecasting [CVPR’20 workshop]

▶ Hybrid model for short term PV forecasting (0-20min) with fisheye
images
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Optical flow: traditional methods
▶ Traditional methods (eg. Horn Schunck, Lukas Kanade): based on

the Brightness Constancy (BC) assumption

∂I

∂t
(t,x) +w(t,x) · ∇I(t,x) = 0

▶ BUT: assumption fails in several common situations
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Optical flow: deep supervised methods
▶ Deep models now state-of-the-art for optical flow, eg RAFT
▶ BUT need a complex training curriculum
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Complementing the Brightness Constancy

▶ Flow decomposition:

w∗(x)︸ ︷︷ ︸
GT optical flow

= (1−α∗(x)) w∗
p(x)︸ ︷︷ ︸

physical (BC) flow

+ α∗(x)︸ ︷︷ ︸
uncertainty of the BC

w∗
a(x)︸ ︷︷ ︸

augmentation flow

▶ Constrained optimization problem to ensure a unique solution
(w∗

p,w
∗
a, α

∗):

min
wp,wa

∥(wa,wp)∥ subject to:
(1− α∗(x)) wp(x) + α(x) wa(x) = w∗(x)

(1− α∗(x)) |I1(x)− I2(x+wp(x))| = 0

α∗(x) = σ (|I1(x)− I2(x+w∗(x))|) .
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COMBO model [ECCV 2022]

Semi-supervised: much simpler training curriculum
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COMBO experimental results

▶ State-of-the-art results compared to RAFT in supervised training
▶ In the semi-supervised setting, greatly reduces the training

curriculum to achieve similar performances
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Conclusions and perspectives

▶ Exploiting approximate physical knowledge in ML models
▶ Decomposition strategy with uniqueness guarantee (APHYNITY)

▶ Benefits of physical priors in Model-Based RL
▶ Better sample efficiency while maintaining performances
▶ Better model ⇒ need to replan less frequently

Perspectives:
▶ Many interesting applications for physics-inspired / augmented

models
▶ fluid dynamics, electromagnetism, thermodynamics, ...
▶ a part is explored in SINCLAIR lab
▶ APHYNITY: what happens for non differentiable physical models ?

▶ Model-Based RL: application to real-world use cases
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