

SINCLAIR

Deep augmented physical models: application to computer vision and reinforcement learning

Vincent Le Guen

GDR Mascott-Num workshop on Physics-informed learning 05/12/2023

Outline

1 Introduction: hybrid physics/AI models

- 2 Augmenting simplified physical models
- 3 Application to model-based reinforcement learning
- Application to optical flow estimation
- 5 Conclusion and perspectives

Modelling approaches for dynamics forecasting

- Model-Based (MB) approaches: requires a deep understanding of the underlying phenomenon, e.g. formalized by ODE/PDE
- Machine Learning (ML) / Deep Learning: more agnostic, now state-of-the-art for several tasks, e.g. ConvLSTM [Shi et al., 2015], NeuralODE [Chen et al., 2018]
- Hybrid ML/MB: cooperation between physical models and data, historically data assimilation [Corpetti et al., 2009], new hot topic in ML

generic videos sky images

weather forecasts quantum physics

m

Prior knowledge

Training data

Machine Learning (ML)

ML/MB hybrid methods

Model Based (MB)

Incorporating full physical knowledge in ML

Hybrid models combining MB and ML (gray box)

- ► A long-standing topic [Rico-Martinez et al., 1994]
- 2 main categories of methods:

Loss function regularization

Physics-informed neural networks [Raissi, 2018]

Constraints in deep architectures

Advection-diffusion model [de Bezenac et al., 2018]

Focus: simplified physical models

Physical models: often approximations of real-world dynamics

- A complete description of a complex natural phenomenon is out of reach, e.g. climate, earth modelling
- Approximations are made to make the numerical resolution tractable, e.g. reduced-order models, resolution on coarse meshes

Outline

1 Introduction: hybrid physics/AI models

2 Augmenting simplified physical models

3 Application to model-based reinforcement learning

4 Application to optical flow estimation

5 Conclusion and perspectives

Augmenting simplified physical models

- Let's consider the dynamical system $\frac{dX_t}{dt} = F(X_t)$, F unknown
- We often have a rough physical prior model F_p , with unknown params θ_p
- We consider a linear augmentation: $F = F_p$ -

$$F = F_p + F_a$$

Motivation: principled ML/MB decomposition

Issue: unconstrained decomposition $\frac{dX_t}{dt} = (F_p + F_a)(X_t)$ often ill-posed

- possibly an infinite number of solutions
- wrong identification of the physical parameters θ_p

Damped pendulum:
$$\frac{d^2\theta}{dt^2} + \omega_0^2 \sin \theta + \lambda \frac{d\theta}{dt} = 0$$

APHYNITY [ICLR'21]

Augmenting PHYsical models for ideNtIfying and forecasTing complex dYnamics

- \blacktriangleright The physical model F_p should explain the dynamics as much as possible
- ▶ The complete model $F = F_p + F_a$ should perfectly explain the dynamics

Theory: if \mathcal{F}_p is a Chebyshev set¹, the decomposition exists and is unique

¹in finite dim spaces, closed convex sets

APHYNITY - trajectory based training

► Parameterized models $F_p^{\theta_p}$ (θ_p physical parameters), $F_a^{\theta_a}$ (θ_a deep NN)

APHYNITY trajectory-based relaxation:

$$\min_{F_p \in \mathcal{F}_p, F_a \in \mathcal{F}} \|F_a\| + \lambda \mathbb{E}_{\mathcal{D}} \left[\int_t \|X_t - \tilde{X}_t\| dt \right] \text{ subject to}$$
$$\frac{d\tilde{X}_t}{dt} = (F_p + F_a)(\tilde{X}_t), \quad \tilde{X}_0 = X_0$$

Optimization with an increasing sequence of λ (variant of Uzawa algorithm)
V. Le Guen - Deep augmented physical models

APHYNITY - experimental results

Experiments on 3 classes of physical phenomena:

> Damped pendulum: $\frac{d^2\theta}{dt^2} + \omega_0^2 \sin \theta + \lambda \frac{d\theta}{dt} = 0$

Simplified \mathcal{F}_p : Hamiltonian (energy conservation), ODE without λ

► Reaction-diffusion: $\frac{\partial u}{\partial t} = a\Delta u + R_u(u, v; k), \ \frac{\partial v}{\partial t} = b\Delta v + R_v(u, v))$

- ▶ Reaction terms: $R_u(u, v; k) = u u^3 k v, R_v(u, v) = u v$
- Simplified *F_p*: PDE without reaction
- **•** Damped wave: $\frac{\partial^2 w}{\partial t^2} c^2 \Delta w + k \frac{\partial w}{\partial t} = 0$

Simplified *F_p*: PDE without damping

All \mathcal{F}_p are closed and convex in $\mathcal{F} \Rightarrow$ Chebyshev

APHYNITY - quantitative results

APHYNITY successful complements simplified physical models for:

- better forecasting performances
- better physical parameter identification
- $\blacktriangleright \ \|F_a\|^2 \sim \mbox{level of } F_p$ physical approximation

	Method	\log MSE	%Err param.	$\ F_a\ ^2$
Incomplete physics	Hamiltonian APHYNITY Hamiltonian	-0.35±0.10 - 3.97 ± 1.20	n/a n/a	n/a 623
	Param ODE (ω_0) APHYNITY Param ODE (ω_0)	-0.14±0.10 - 7.86 ± 0.60	13.2 4.0	n/a 132
Complete physics	True ODE APHYNITY True ODE	-8.58±0.20 -8.44±0.20	n/a n/a	n/a 2.3

APHYNITY - qualitative results

(a) Param PDE (a, b), diffusion-only (b) APHYNITY Param PDE (a, b)

(c) Ground truth simulation

Figure: Predictions of u (top) and v for the reaction-diffusion equations.

Figure: Predictions on the damped wave equations.

Outline

- 1 Introduction: hybrid physics/AI models
- 2 Augmenting simplified physical models
- 3 Application to model-based reinforcement learning
- 4 Application to optical flow estimation
- 5 Conclusion and perspectives

Model-Based RL with prior physical models

NeurIPS 2022 Offline RL workshop

Residual Model-Based Reinforcement Learning for Physical Dynamics

Zakariae EL ASRI CEDRIC* zakariae.el-asri@lecnam.net Clément RAMBOUR CEDRIC* clement.rambour@lecnam.net

Nicolas THOME ISIR[†] nicolas.thome@sorbonne-universite.fr Vincent Le Guen EDF[‡] vincent.le-guen@edf.fr

Abstract

Dynamic control problems are a prevalent topic in robotics. Deep neural networks have been shown to learn accurately many complex dynamics, but these approaches remain data-inefficient or intractable in some tasks. Rather than learning to reproduce the environment dynamics, traditional control approaches use some physical knowledge to describe the environment's evolution. These approaches do not need

Model-Free v.s. Model-Based RL

Model-Free RL v.s.

Directly learn a value function/policy with samples

+ very flexible / good performances

- need a lot of samples

Model-Based RL

Learn a transition model of the world, then plan with the model

+ Sample efficient - accuracy of the model has a huge impact

Model-Based Reinforcement Learning (MBRL)

- 1 Run random actions to collect dataset $D = \{(s_t, a_t, s_{t+1})\}$
- 2 Learn dynamics model $f^{ heta}(s_t, a_t)$ to minimize loss function $\mathcal{L}(heta)$
- 3 Plan through the learned model $f^{ heta}(s_t, a_t)$ to choose actions over horizon H
- 4 Execute actions on a receding horizon RH ≪ H.
- 5 Append (s_t, a_t, s_{t+1}) to dataset D

In MBRL, *model* often refers to data-driven models ! \Rightarrow In this work, physical models as prior

Training the dynamical model

Training objective

$$\begin{split} \text{minimize} \quad \mathcal{L}(\theta) &= \frac{1}{|\mathcal{D}|} \sum_{(s_t, a_t, s_{t+1}) \in \mathcal{D}} \|\hat{s}_{t+1} - s_{t+1}\|_2^2 + \alpha \|F_r^{\theta_r}\|_2 \\ \text{subject to} \quad \left. \frac{\mathrm{d}s_t}{\mathrm{d}t} \right|_{t=t'} &= (F_p^{\theta_p} + F_r^{\theta_r})(s_t, a_{t'}). \end{split}$$

Experimental setup

2 standard control tasks from OpenAI Gym

 $\begin{array}{ll} \mbox{pendulum} & \mbox{acrobot} \\ S \in \mathbb{R}^2, A \in \mathbb{R} & \mbox{} S \in \mathbb{R}^4, A \in \mathbb{R}^2 \end{array}$

Simplified physical models: pendulum and acrobot equations without friction

V. Le Guen - Deep augmented physical models

16/23

Results - Pendulum

Results - Acrobot

Outline

1 Introduction: hybrid physics/AI models

- 2 Augmenting simplified physical models
- 3 Application to model-based reinforcement learning
- Application to optical flow estimation
- 5 Conclusion and perspectives

Application to video prediction: PhyDNet [CVPR'20]

Photovoltaic energy forecasting [CVPR'20 workshop]

 Hybrid model for short term PV forecasting (0-20min) with fisheye images

Optical flow: traditional methods

 Traditional methods (eg. Horn Schunck, Lukas Kanade): based on the Brightness Constancy (BC) assumption

$$\frac{\partial I}{\partial t}(t, \mathbf{x}) + \mathbf{w}(t, \mathbf{x}) \cdot \nabla I(t, \mathbf{x}) = 0$$

BUT: assumption fails in several common situations

Image t

Image t+1

Optical flow: deep supervised methods

- Deep models now state-of-the-art for optical flow, eg RAFT
 - BUT need a complex training curriculum

Flying Chairs

Flying Things 3D

MPI Sintel KITTI V. Le Guen - Deep augmented physical models

Complementing the Brightness Constancy

Constrained optimization problem to ensure a unique solution (w^{*}_p, w^{*}_a, α^{*}):

$$\begin{split} \min_{\mathbf{w}_p, \mathbf{w}_a} & \|(\mathbf{w}_a, \mathbf{w}_p)\| & \text{subject to:} \\ \left\{ \begin{array}{l} (1 - \alpha^*(\mathbf{x})) \ \mathbf{w}_p(\mathbf{x}) + \alpha(\mathbf{x}) \ \mathbf{w}_a(\mathbf{x}) = \mathbf{w}^*(\mathbf{x}) \\ (1 - \alpha^*(\mathbf{x})) \ |I_1(\mathbf{x}) - I_2(\mathbf{x} + \mathbf{w}_p(\mathbf{x}))| = 0 \\ \alpha^*(\mathbf{x}) = \sigma \left(|I_1(\mathbf{x}) - I_2(\mathbf{x} + \mathbf{w}^*(\mathbf{x}))| \right). \end{split} \right. \end{split}$$

COMBO model [ECCV 2022]

Semi-supervised: much simpler training curriculum

COMBO experimental results

- State-of-the-art results compared to RAFT in supervised training
- In the semi-supervised setting, greatly reduces the training curriculum to achieve similar performances

COMBO uncertainty α

Outline

- 1 Introduction: hybrid physics/AI models
- 2 Augmenting simplified physical models
- 3 Application to model-based reinforcement learning
- Application to optical flow estimation
- 6 Conclusion and perspectives

Conclusions and perspectives

Exploiting approximate physical knowledge in ML models

Decomposition strategy with uniqueness guarantee (APHYNITY)

Benefits of physical priors in Model-Based RL

- Better sample efficiency while maintaining performances
- Better model \Rightarrow need to replan less frequently

Perspectives:

- Many interesting applications for physics-inspired / augmented models
 - fluid dynamics, electromagnetism, thermodynamics, ...
 - a part is explored in SINCLAIR lab
 - APHYNITY: what happens for non differentiable physical models ?

Model-Based RL: application to real-world use cases

Conclusions and perspectives

Exploiting approximate physical knowledge in ML models

Decomposition strategy with uniqueness guarantee (APHYNITY)

Benefits of physical priors in Model-Based RL

- Better sample efficiency while maintaining performances
- Better model \Rightarrow need to replan less frequently

Perspectives:

- Many interesting applications for physics-inspired / augmented models
 - fluid dynamics, electromagnetism, thermodynamics, ...
 - a part is explored in SINCLAIR lab
 - APHYNITY: what happens for non differentiable physical models ?
- Model-Based RL: application to real-world use cases

References I

[Chen et al., 2018] Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential equations. In Advances in neural information processing systems (NeurIPS), pages 6571–6583.

[Corpetti et al., 2009] Corpetti, T., Héas, P., Mémin, E., and Papadakis, N. (2009). Pressure image assimilation for atmospheric motion estimation. Tellus A: Dynamic Meteorology and Oceanography, 61(1):160–178.

[de Bezenac et al., 2018] de Bezenac, E., Pajot, A., and Gallinari, P. (2018). Deep learning for physical processes: Incorporating prior scientific knowledge. International Conference on Learning Representations (ICLR).

[Raissi, 2018] Raissi, M. (2018). Deep hidden physics models: Deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19(1):932–955.

[Rico-Martinez et al., 1994] Rico-Martinez, R., Anderson, J., and Kevrekidis, I. (1994). Continuous-time nonlinear signal processing: a neural network based approach for gray box identification. In Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pages 596–605. IEEE.

[Shi et al., 2015] Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-K., and Woo, W.-c. (2015). Convolutional lstm network: A machine learning approach for precipitation nowcasting. Advances in neural information processing systems, 28.