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Stationary diffusion
• Consider the random stationary diffusion equation

−∇x · (a(x , y)∇x u(x , y)) = f (x) in D
u(x , y) = 0 on ∂D

• x ∈ D for a bounded Lipschitz domain D ⊆ Rd

• y ∼ ρ for a measure ρ on the probability space (Ω,Σ, ρ)

The Dirichlet principle states that

u = arg min
v∈H1

0 (D)⊗L2(ρ)

∫ 1
2a(x , y)‖∇x v(x , y)‖2

2 − f (x)v(x , y) dx dρ(y)

Goal: A theory for physics-informed losses, using adaptivity and optimal sampling.
Disclaimer: No final numerical experiments.
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Approximation by tensor networks

• Approximate u in a model class M ⊆ H1
0 (D) ⊗ L2(ρ) as

uM = arg min
v∈M

∫ 1
2a(x , y)‖∇x v(x , y)‖2

2 − f (x)v(x , y) dx dρ(y)

• Choose M as a set of low-rank tree tensor networks.
• Tensor networks are multilinear approximations that can break the curse of dimensionality.
• They can be interpreted as a subclass of neural networks.
• They are a popular tool in the numerics of parametric PDEs because

• the optimisation problem is practically solvable
• refinement is possible and interpretable
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The theory-to-practice gap



General setting

• Let ρ be a probability measure on X .
• Let H be a Hilbert space with inner product

(v , w) :=
∫

(Lx v)ᵀ(Lx w) dρ(x).

• L2(ρ) corresponds to Lx v := v(x).
• H1

0 (ρ) corresponds to Lx v := ∇v(x).

• For a model class M ⊆ H consider

uM = arg min
v∈M

L(v) with L(v) :=
∫

`(v ; x) dρ(x).
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Generalisation error bounds

• If L is replaced by a MC estimate Ln with sample size n,

uM,n := arg min
v∈M

Ln(v).

• This ensues a generalisation error.
• Suppose that M is compact.
• Suppose ` is bounded and `( • , x) is Lipschitz on M for all x ∈ X .
• Then, at best,

E[L(uM,n)] ≤ L(uM) + O(n−1/2).

This is a slow convergence under strong assumptions.

Gruhlke, Miranda, Nouy, Trunschke 4



Least squares setting

• Consider, initially,
L(v) := 1

2 ‖u − v‖2

• for the sake of simplicity,
• as a model for locally L-smooth and strongly convex losses and
• because we will use it later.

• Recall that

uM ∈ arg min
v∈M

1
2 ‖u − v‖2 and uM,n ∈ arg min

v∈M

1
2 ‖u − v‖2

n.

• Specifically, let w > 0 satisfy
∫

w−1 dρ = 1 and x1, ... , xn ∼ w−1ρ be i.i.d. and let

‖u − v‖2
n := 1

n

n∑
i=1

w(xi)‖Lxi (u − v)‖2
2.
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Conditions for solvability and stability

1. To obtain a valid solution, we want that
‖u − v‖2

n ≤ ε implies ‖u − v‖2 ≤ (1 − δ)−1ε

for some δ ∈ (0, 1) and all v ∈ M.

• Otherwise, there exist spurious (global) empirical minima.

2. For numerical stability, we also want that
‖u − v‖2 ≤ ε implies ‖u − v‖2

n ≤ (1 + δ)ε
for some δ ∈ (0, 1) and all v ∈ M.

• Otherwise, numerically minimising ‖ • ‖n might not yield a minimum for ‖ • ‖.

With the set S := {u} − M, both conditions can be combined into RIPS(δ)

(1 − δ)‖v‖2 ≤ ‖v‖2
n ≤ (1 + δ)‖v‖2, v ∈ S.
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The probability of RIPS(δ)

Definition

For any set S ⊆ H, define the inverse Christoffel function KS(y) := supv∈S
‖Lx v‖2

2
‖v‖2 .

Theorem (Eigel, Schneider, T – 2021)
Under suitable assumptions on the set S ⊆ H, and for any δ ∈ (0, 1), there exists C such that

P[¬ RIPS(δ)] ≤ C exp
(

−n
2

( δ

‖wKS‖L∞(ρ)

)2
)

.

The constant C is independent of n and depends polynomially on δ and ‖wKS‖−1
L∞(ρ).

This probability is unbounded for neural networks.
It grows exponentially with the number of variables for tensor networks.
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Practical bound

• We can restrict the model class to a neighbourhood N ⊆ M of the solution.

Theorem

Let r > 0 and N ⊆ M ∩ B(uM, r) be a manifold with bounded curvature1 κ ≤ 1
r . Then

KTuM N ≤ KS ≤
(√

KTuM N + κr
2
√

KT⊥
uM

N

)2
.

This may explain successful applications,
but it is an unrealistic assumption.

1with bounded reach
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Discussion

• The theory only applies to quadratic losses.
• But it shows even for those that we should not use i.i.d. samples.

Idea: Adapt the samples for each iteration of a SGD.
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Optimal sampling for SGD



General framework

1. Compute the gradient
gt := ∇v L(vt).

2. Define the “local linearisation” Tt and the empirical map Pn
t : H → Tt .

3. Perform the linear update
v̄t+1 := vt − stPn

t gt .

4. Map v̄t+1 back to M via the recompression map

vt+1 := Rt(v̄t+1).

SGD and NGD correspond to different choices of Pn
t and Rt .
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SGD

• Parameterise vt := V (θt) with θt ∈ RD and recall that SGD defines the update direction

∇θLn(V (θ)).

• Let ϕk := ∂kV (θt) for k = 1, ... , D and Tt := span{ϕk : k = 1, ... , D}.
• Under suitable conditions on L, and for H = L2(ρ), it holds that

(∇θLn(V (θk)), ek) = (∇v L(v), ϕk)n.

• Hence, SGD corresponds to the choice

Pn
t g :=

D∑
k=1

ζ̂kϕk , ζ̂k := (g , ϕk)n = 1
n

n∑
i=1

wt(xi)g(xi)ϕk(xi).

• However, the SGD choice Rt(V (θ) − sPn
t g) := V (θ − s ζ̂) does not satisfy our assumptions.
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Convergence rates for “our” SGD

• The speed of convergence depends on the constants

E
[
(gt , Pn

t gt)
∣∣Ft

]
≥ cbias,1‖Ptgt‖2 − cbias,2,

E
[
‖Pn

t gt‖2 ∣∣Ft
]

≤ cvar,1‖Ptgt‖2 + cvar,2‖(I − Pt)gt‖2.

• Namely, E[L(vt+1)|vt ] ≤ L(vt) requires a step size st .
cbias
cvar,1

.
• Define the Gramian matrix G ∈ RD×D by Gjk := (ϕj , ϕk).
• Denote by λ∗ the smallest positive eigenvalue and by λ∗ the largest eigenvalue.
• Then SGD exhibits the constants

cbias = λ∗(G), cvar,1 = λ∗(G)2(n−1)+λ∗(G)‖wtKTt ‖L∞(ρ)
n , cvar,2 = λ∗(G)‖wtKTt ‖L∞(ρ)

n .
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NGD and optimal sampling

• Improving the convergence rate requires two steps:
1. orthogonalising the basis ϕ1, ... , ϕD  λ∗(G) = λ∗(G) = 1 is optimal.
2. choosing an optimal weight function wt ∝ K−1

Tt
 ‖wtKTt ‖L∞(ρ) = dim(Tt) remains bounded.

• The first step yields “our” version of NGD.
• But, notably, ‖KTt ‖L∞(ρ) could still become unbearably large.
• Applying both simultaneously yields the uniform rates:

GD Best-cast Worst-case SGD
L-smoothness O(t−1) O(tε−1) O(tε−1/2) O(tε−1/2)
λ-PŁ on M Õ(e−t) Õ(e−t) O(tε−1) O(tε−1)
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SGD for linear least squares
• approximates u(x) := exp(x) on L2(ρ) with ρ = N (0, 1)
• uses 70 Gaussian samples per iteration

100 101 102 103 104

step

10−5

10−3

10−1

101

L(vt)− Lmin,M
st
t−1 rate
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SGD for linear least squares
• approximates u(x) := exp(x) on L2(ρ) with ρ = N (0, 1)
• uses 7 optimal samples per iteration

100 101 102 103 104

step

10−7

10−5

10−3

10−1

101

L(vt)− Lmin,M
st
t−1 rate
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SGD for least squares with width-20 shallow neural networks
• approximates u(x) := sin(2πx) on L2(ρ) with ρ = U([0, 1])
• uses 200 uniform samples per iteration

100 101 102

step

10−2

10−1

100

L(vt)

st
t−1/2 rate
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SGD for least squares with width-20 shallow neural networks
• approximates u(x) := sin(2πx) on L2(ρ) with ρ = U([0, 1])
• uses 200 uniform samples per iteration and an adaptive step size

100 101 102

step

10−3

10−2

10−1

100

L(vt)

st
t−1/2 rate
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NGD for least squares with width-20 shallow neural networks
• approximates u(x) := sin(2πx) on L2(ρ) with ρ = U([0, 1])
• uses 200 optimal samples per iteration and an adaptive step size

100 101 102

step

10−6

10−4

10−2

100

L(vt)

st
t−1/2 rate
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