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Stationary diffusion

= Consider the random stationary diffusion equation

=V (a(x, y)Vxu(x,y)) = f(x) in D
u(x,y)=0 on 9D

» x € D for a bounded Lipschitz domain D C R

= y ~ p for a measure p on the probability space (22, X, p)

The Dirichlet principle states that

. 1
u=argmin [ 2ol )IVavx 1B - F)vlx ) dxdp(y)
vEHZ(D)®L2(p)

Goal: A theory for physics-informed losses, using adaptivity and optimal sampling.
Disclaimer: No final numerical experiments.
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Approximation by tensor networks

= Approximate u in a model class M C H}(D) ® L?(p) as
1
uns = argrmin [ Za(x, )| Vvl 9)IB = v, y) dx doy)
1S

= Choose M as a set of low-rank tree tensor networks.
= Tensor networks are multilinear approximations that can break the curse of dimensionality.
= They can be interpreted as a subclass of neural networks.

= They are a popular tool in the numerics of parametric PDEs because

= the optimisation problem is practically solvable
= refinement is possible and interpretable
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The theory-to-practice gap



General setting

= Let p be a probability measure on X.
= Let H be a Hilbert space with inner product

(v,w):= /(LXV)T(LXW) dp(x).

= [%(p) corresponds to L,v := v(x).
= Hj(p) corresponds to Lyv := Vv(x).

= For a model class M C H consider

up = argminL(v) with L(v) = /E(v;x) dp(x).
veM
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Generalisation error bounds

= If L is replaced by a MC estimate £, with sample size n,

Up,p := arg minLy(v).
veM

= This ensues a generalisation error.
= Suppose that M is compact.
= Suppose ¢ is bounded and £( «, x) is Lipschitz on M for all x € X.

= Then, at best,
E[L(uprn)] < L(up) + O(n~1/?).

This is a slow convergence under strong assumptions.
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Least squares setting

= Consider, initially,
L(v) = llu—v|?

= for the sake of simplicity,
= as a model for locally L-smooth and strongly convex losses and
= because we will use it later.

= Recall that

up € argmin 3 |lu— v|? and Up,n € argmin & [lu — v|[2.
veM veM

= Specifically, let w > 0 satisfy f w1 dp=1and xq,..., X, ~ Wflp be i.i.d. and let

n

1
lw = vii7 == wlx)liL(u = V)3

i=1
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Conditions for solvability and stability
1. To obtain a valid solution, we want that

lu—v|? <eimplies ||u—v|? < (1-4§)"te
for some 6 € (0,1) and all v € M.
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Conditions for solvability and stability

1. To obtain a valid solution, we want that
lu—v|? <eimplies ||u—v|? < (1-4§)"te
for some 6 € (0,1) and all v € M.

= Otherwise, there exist spurious (global) empirical minima.
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Conditions for solvability and stability

1. To obtain a valid solution, we want that
lu—v|? <eimplies ||u—v|? < (1-4§)"te
for some 6 € (0,1) and all v € M.

= Otherwise, there exist spurious (global) empirical minima.
2. For numerical stability, we also want that
lu—v||> < e implies |ju— v|? < (1+6)e
for some 0 € (0,1) and all v € M.

= Otherwise, numerically minimising || ¢ ||, might not yield a minimum for || «||.

With the set S := {u} — M, both conditions can be combined into RIPs(J)

@ =d)vl* < IIvll; < @ +d)lIvl2, ves.
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The probability of RIPs(6)

Definition

2
For any set S C #, define the inverse Christoffel function fs(y) := sup,cs ”ﬁ\xf‘ﬂﬂz.

Theorem (Eigel, Schneider, T — 2021)
Under suitable assumptions on the set S C H, and for any § € (0, 1), there exists C such that

P[-=RIPs(0)] < Cexp (—g (5)2).

[w8s|| Lo (o)

The constant C is independent of n and depends polynomially on § and ||Wﬁ5HZo£(p).

This probability is unbounded for neural networks.
It grows exponentially with the number of variables for tensor networks.
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Practical bound

= We can restrict the model class to a neighbourhood N' C M of the solution.
Theorem

Let r >0 and N'C M N B(up, r) be a manifold with bounded curvature' k < 1. Then

2
ﬁTUMNSﬁSS( 81, N—i— \/ﬁp N)-

This may explain successful applications,
but it is an unrealistic assumption.

lwith bounded reach
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Discussion

= The theory only applies to quadratic losses.

= But it shows even for those that we should not use i.i.d. samples.

Idea: Adapt the samples for each iteration of a SGD.
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Optimal sampling for SGD




General framework

1. Compute the gradient
gt =V, L(v).
2. Define the “local linearisation” 7; and the empirical map P} : H — 7.
3. Perform the linear update
Ver1 = vy — st P gy
4. Map vgy1 back to M via the recompression map

Vi4l = Rt(vt-&-l)-

SGD and NGD correspond to different choices of P and R;.
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SGD

= Parameterise v; := V/(0;) with 0, € RP and recall that SGD defines the update direction

w Let g := O V(0;) for k=1,...,D and T; :=span{px : k=1,..., D}.
= Under suitable conditions on £, and for H = L?(p), it holds that

(VoLa(V(0k)), ex) = (Vv L(V), @k)n-

Hence, SGD corresponds to the choice

D R R 1 n
Pilg:=> Corr  Cii=(g o) = - D we(x)g () ()-
k=1 i=1

= However, the SGD choice R,(V/(0) — sP"g) := V(6 — s() does not satisfy our assumptions.
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Convergence rates for “our” SGD

= The speed of convergence depends on the constants

UE[(gi.“: Ptljgt) |~Ft] 2 Cbias,1||PtgtH2 — Chias,2s
[E[||P:gt||2 ’]:t] < Cvar,lHPtgl“H2 + Cvar2[|(/ = Pt)gtHZ-

Namely, E[L(ve11)|ve] < L(v¢) requires a step size s; < Sbias

~ Cvar1l’

Define the Gramian matrix G € RP*P by Gk = (), px)-

= Denote by A\, the smallest positive eigenvalue and by A* the largest eigenvalue.

Then SGD exhibits the constants

A" (G)(n=1)+X" (6)|we e || oo
Chias = )\*(G), Cyar,1 = A —t (p)’ Cvar,2

_ N (G)lwehTe llioe (o)
- .
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NGD and optimal sampling

= Improving the convergence rate requires two steps:

1. orthogonalising the basis ¢1, ..., op ~» Ai(G) = A*(G) = 1 is optimal.
2. choosing an optimal weight function w; o< ﬁ}tl ~ ||We R || oo (o) = dim(T¢) remains bounded.

= The first step yields “our” version of NGD.

But, notably,

87, || () could still become unbearably large.

= Applying both simultaneously yields the uniform rates:

GD Best-cast  Worst-case SGD
L-smoothness  O(t~1) O(t=1)  O(t=Y?)  O(tc~1/?)
A-Pt on M @(e_t) @(e—t) O(tE—l) O(te—l)
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SGD for linear least squares

= approximates u(x) := exp(x) on L?(p) with p = N(0, 1)
= uses 70 Gaussian samples per iteration

10!
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SGD for linear least squares

= approximates u(x) := exp(x) on L?(p) with p = N(0, 1)
= uses 7 optimal samples per iteration
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SGD for least squares with width-20 shallow neural networks

= approximates u(x) := sin(27x) on L2(p) with p = U([0, 1])
= uses 200 uniform samples per iteration

100 E

101 E

1072 E

St
=== t71/2 rate

100 10! 102

Gruhlke, Miranda, Nouy, Trunschke step 16



SGD for least squares with width-20 shallow neural networks

= approximates u(x) := sin(27x) on L2(p) with p = U([0, 1])
= uses 200 uniform samples per iteration and an adaptive step size
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NGD for least squares with width-20 shallow neural networks

= approximates u(x) := sin(27x) on L2(p) with p = U([0, 1])
= uses 200 optimal samples per iteration and an adaptive step size
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