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3 / 38Hybrid modeling

Statistical model: Y = u⋆(X ) + ε

Goal: estimate u⋆ using

▶ Supervised learning: an i.i.d. training sample (Xi ,Yi )1⩽i⩽n

▶ Physical modeling: a prior knowledge

Fk(u
⋆, ·) ≃ 0, 1 ⩽ k ⩽ M,

+ boundary/initial conditions for u⋆

▶ Neural networks

▶ Physics-Informed Neural Networks (PINNs)
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PINNsStatistics PDE 
models

Improve physical models with data
IMPERFECT/ INCOMPLETE MODELING

INTERPRETABILITY / EXTRAPOLATION

Physical consistency
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6 / 38Modeling the blood flow

[Arzani et al., 2021]

Goal: estimate the blood flow u = (ux , uy ,P)

Navier-Stokes equations:
▶ F1(u, ·) = ux∂xux + uy∂yux − ∂2

x,xux − ∂2
y ,yux + ∂xP

▶ F2(u, ·) = ux∂xuy + uy∂yuy − ∂2
x,xuy − ∂2

y ,yuy + ∂yP

▶ F3(u, ·) = ∂xux + ∂yuy

(Incomplete) boundary conditions:
▶ (ux , uy ) = 0 on the boundaries of the vessel
▶ Unknown inflow and outflow
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8 / 38Modeling the heat transfer

[Cai et al., 2021]

▲ Temperature sensors
• Velocity sensors

Goal: estimate the temperature T on the bundles

Navier-Stokes and diffusion equations on u = (ux , uy ,P,T ):
▶ F1(u, ·) = ux∂xux + uy∂yux − ∂2

x,xux − ∂2
y ,yux + ∂xP

▶ F2(u, ·) = ux∂xuy + uy∂yuy − ∂2
x,xuy − ∂2

y ,yuy + ∂yP

▶ F3(u, ·) = ∂xux + ∂yuy
▶ F4(u, ·) = ux∂xT + uy∂yT − ∂2

x,xT − ∂2
y ,yT

(Incomplete) boundary conditions:
▶ (ux , uy ) = 0 and T = 0 on the physical boundaries
▶ Inflow with ux = 1, uy = 0, and T = 0
▶ Outflow with ∂xT = 0



9 / 38The PDE solver case

Specificity: no data Yi and exact modeling

Example: the nonlinear Schrödinger PDE [Raissi et al., 2019]

i∂tu + 0.5∂2
x,xu + |u|2u = 0

Periodic boundary conditions and initial condition: u(x , 0) = 2 /cosh(x)
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Hybrid modeling problems:
▶ Improve imperfect/incomplete physical models with data
▶ Conversely, provide interpretability and extrapolation in ML

PDE solvers:
▶ Rely on complex triangulations of the domain
▶ Prone to the curse of the dimension

PINNs:
▶ A modern and efficient ML tool for both problems
▶ Natural implementation in the deep learning framework

Our objective
To better understand the capabilities and limitations of PINNs
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13 / 38Geometry of the problem

▶ Ω ⊆ Rd1 : the bounded set on which the problem is posed

▶ u⋆ : Ω → Rd2 : the unknown target function

▶ Differential operators Fk(u
⋆, ·) ≃ 0 on Ω, 1 ⩽ k ⩽ M

▶ ∂Ω: the boundary of Ω ⇒ often not C 1 but Lipschitz

▶ Dirichlet conditions: u⋆(x) ≃ h(x) on E ⊆ ∂Ω

▶ Possible extensions to other types of boundary/initial conditions
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▶ Training sample (X1,Y1), . . . , (Xn,Yn) ∈ Ω×Rd2 (unknown distribution)

▶ Boundary/initial sample X (e)
1 , . . . ,X (e)

ne ∈ E ⊆ ∂Ω (chosen distribution)

▶ Collocation points X (r)
1 , . . . ,X (r)

nr ∈ Ω (uniform distribution)

Empirical risk function

Rn,ne ,nr (uθ) =
λd

n

n∑
i=1

∥uθ(Xi )− Yi∥2
2︸ ︷︷ ︸

data-fidelity

+
λe

ne

ne∑
j=1

∥uθ(X (e)
j )− h(X (e)

j )∥2
2︸ ︷︷ ︸

boundary conditions

+
1
nr

M∑
k=1

nr∑
ℓ=1

Fk(uθ,X
(r)
ℓ )2︸ ︷︷ ︸

PDEs



16 / 38Neural architecture

▶ NNH(D): the set of neural networks
with H hidden layers of width D

▶ NNH = ∪DNNH(D)

▶ θ: parameter of the neural network
▶ tanh: activation function
▶ uθ ∈ C∞(Ω̄,Rd2)

X1

Xd1

...

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

Y1

Yd2

...

Minimizing sequence

We denote by (θ̂(p, ne , nr ,D))p∈N any minimizing sequence, i.e.,

lim
p→∞

Rn,ne ,nr (uθ̂(p,ne ,nr ,D)) = inf
uθ∈NNH (D)

Rn,ne ,nr (uθ).

▶ The training of PINNs relies on the backpropagation algorithm

https://github.com/maziarraissi/PINNs
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Hybrid modeling

▶ Statistical properties of PINNs
▶ Impact of the physical model
▶ Tuning of the PINN hyperparameters

PDE solver

▶ Reconstruction of the solution u⋆ of a PDE system
▶ Curse of the dimension



18 / 38Density of neural networks in Hölder spaces

Proposition

Let Ω ⊆ Rd1 be a bounded Lipschitz domain and K ∈ N. Then, for any
function u ∈ C∞(Ω̄,Rd2), there exists a sequence (up)p∈N ∈ NNH such
that limp→∞ ∥u − up∥CK (Ω) = 0.

▶ Valid for bounded Lipschitz domains + CK (Ω) norm
▶ Generalization of De Ryck et al. (2021)
▶ In line with practical applications, where D ≫ H

▶ Key property to solve PDE systems
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20 / 38Theoretical risk and consistency

Theoretical risk

Rn(u) =
λd

n

n∑
i=1

∥u(Xi )− Yi∥2
2 + λeE∥u(X (e))− h(X (e))∥2

2

+
1
|Ω|

M∑
k=1

∫
Ω

Fk(u, x)2dx

A natural requirement: Risk-consistency

lim
ne ,nr→∞

lim
p→∞

Rn(uθ̂(p,ne ,nr ,D))
?
= inf

u∈NNH (D)
Rn(u)

▶ Warning: possible overfitting



21 / 38Overfitting: hybrid modeling

▶ Observations: Yi = u⋆(Xi ) + εi
▶ Goal: estimate the trajectory u⋆ on Ω =]0, 1[
▶ Model (dynamics with friction): F (u, x) = u′′(x) + u′(x)

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0 Observations (Xi, Yi)
Random samples X(r)

j

u ( , 30, 9)
u

▶ Overfitting: Rn,nr = 0 but Rn = ∞



22 / 38Overfitting: PDE solver

▶ Heat equation: F (u, x) = ∂tu(x) − ∂2
x,xu(x) + boundary/initial

conditions
▶ Goal: reconstruct the solution u⋆ on Ω =]− 1, 1[×]0, 1[

Space
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Initial and boundary conditions

▶ Overfitting: Rne ,nr = 0 but R = ∞



23 / 38Fighting overfitting: ridge regularization

Proposition
There exists a constant CK ,H > 0 such that

∥uθ∥CK (Rd1 ) ⩽ CK ,H(D + 1)HK+1(1 + ∥θ∥2)
HK∥θ∥2.

Ridge PINNs

R(ridge)
n,ne ,nr (uθ) = Rn,ne ,nr (uθ) + λ(ridge)∥θ∥2

2

We denote by (θ̂
(ridge)
(p,ne ,nr ,D))p∈N a minimizing sequence of this risk.

▶ Implemented in standard DL libraries via weight decay



24 / 38Polynomial operators

Example: the Navier-Stokes equations on u = (ux , uy ,P):

▶ F1(u, ·) = ux∂xux + uy∂yux − ∂2
x,xux − ∂2

y ,yux + ∂xP

▶ F1(u, ·) = P(ux , ∂xux , ∂
2
x,xux , ∂yux , ∂

2
y ,yux , uy , ∂xP)

▶ P(Z1,Z2,Z3,Z4,Z5,Z6,Z7) = Z1Z2 + Z6Z4 − Z3 − Z5 + Z7

▶ The coefficient in front of the monomial Z1Z2 is 1 ∈ C∞(Ω̄,Rd2)

▶ Warning: degF1 = 3 but degP = 2

Polynomial operator
An operator F (u, ·) is polynomial if it can be expressed as a polynomial
in u and its derivatives, with smooth functions as coefficients.

✓ Linear PDEs (e.g., advection, heat, and Maxwell)
✓ Some nonlinear PDEs (e.g., Blasius, Burger, and Navier-Stokes)
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Assumptions:

▶ The condition function h is Lipschitz
▶ F1, . . . ,FM are polynomial operators

Theorem
With a ridge hyperparameter of the form

λ(ridge) = min(ne , nr )
−κ, κ =

1
12 + 4H(1 + (2 + H)maxk deg(Fk))

,

one has, almost surely,

lim
ne ,nr→∞

lim
p→∞

Rn(uθ̂(ridge)(p,ne ,nr ,D)) = inf
u∈NNH (D)

Rn(u)

and

lim
D→∞

lim
ne ,nr→∞

lim
p→∞

Rn(uθ̂(ridge)(p,ne ,nr ,D)) = inf
u∈C∞(Ω̄,Rd2 )

Rn(u).
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▶ Ridge regularization prevents overfitting of PINNs

▶ The decay rate of λ(ridge) = min(ne , nr )
−κ does not depend on the

dimension d1 of Ω

▶ λ(ridge) can be tuned by monitoring the overfitting gap
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28 / 38Risk-consistency and strong convergence

✓ Ridge PINNs are risk-consistent

Question
Is this sufficient to have lim

D,ne ,nr ,p→∞
uθ̂(ridge)(p,ne ,nr ,D) = u⋆ in L2(Ω)?

Answer: No
Let Ω =]0, 1[2, h(x , 0) = 1, h(0, t) = 1, and F (u, ·) = ∂xu + ∂tu. Then,
for any (Xi ,Yi )1⩽i⩽n, there exists (up)p∈N ∈ NNH(2n) such that

lim
p→∞

Rn(up) = 0,

but limp→∞ up = 1 in L2(Ω) (independently of u⋆).

✗ KO if imperfect modeling
✓ Possible solution: Sobolev regularization
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Weak derivatives
A function v ∈ L2(Ω,Rd2) is the α-th weak derivative of u ∈ L2(Ω,Rd2)
if, for any φ ∈ C∞(Ω̄,Rd2) with compact support in Ω, one has∫

Ω

⟨v , φ⟩ = (−1)|α|
∫
Ω

⟨u, ∂αφ⟩.

Notation: v = ∂αu.

Sobolev spaces
Hm(Ω,Rd2) is the space of all functions u ∈ L2(Ω,Rd2) such that ∂αu
exist for all |α| ⩽ m. This space is naturally endowed with the norm

∥u∥2
Hm(Ω) =

1
|Ω|

∑
|α|⩽m

∫
Ω

∥∂αu∥2
2.

▶ Cm(Ω̄,Rd2) ⊆ Hm(Ω,Rd2)

▶ Standard derivatives ↔ weak derivatives



30 / 38Sobolev regularization

Sobolev-regularized risks
▶ Empirical risk:

R(reg)
n,ne ,nr (uθ) = Rn,ne ,nr (uθ) + λ(ridge)∥θ∥2

2 +
λt

nr

nr∑
ℓ=1

∑
|α|⩽m+1

∥∂αuθ(X
(r)
ℓ )∥2

2

▶ Minimizing sequence: (θ̂(reg)(p, ne , nr ,D))p∈N

▶ Theoretical risk:

R(reg)
n (u) = Rn(u) + λt∥u∥2

Hm+1(Ω)

▶ The Sobolev regularization is straightforward to implement in the PINN
framework with Fα(u, ·) = ∂αu

▶ Computational scalability via the backpropagation algorithm
▶ Coercivity of the risk
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Theorem (Linear PDE systems)
Assume that there exists a unique solution u⋆ ∈ Hm+1(Ω,Rd2) to the
PDE system, where m ⩾ maxk deg(Fk). Thus, taking

λ(ridge) = min(ne , nr )
−κ, κ =

1
12 + 4H(1 + (2 + H)(m + 2))

,

one has, almost surely,

lim
λt→0

lim
D→∞

lim
ne ,nr→∞

lim
p→∞

∥uθ̂(reg)(p,ne ,nr ,D,λt)
− u⋆∥Hm(Ω) = 0.

▶ The parameters m and λ(ridge) do not depend on d1

▶ The convergence is in Hm(Ω) for the penalty ∥u∥2
Hm+1(Ω)

▶ Tools: Lax Milgram + functional analysis (weak topology)
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Physics inconsistency
For any u ∈ Hm+1(Ω,Rd2), the physics inconsistency of u is defined by

PI(u) = λeE∥u(X (e))− h(X (e))∥2
2 +

1
|Ω|

M∑
k=1

∫
Ω

Fk(u, x)2dx .

Theorem (Linear PDE systems)
Assume that u⋆ ∈ Hm+1(Ω,Rd2) for some m ⩾ max(⌊d1/2⌋,K ). Let
λe = 1, λt = (log n)−1, and λd = n1/2/(log n). Then

lim
D→∞

lim
ne ,nr→∞

lim
p→∞

E
∫
Ω

∥u(n)
θ̂(reg)(p,ne ,nr ,D)

− u⋆∥2
2dµX ≲

log2(n)

n1/2

and lim
D→∞

lim
ne ,nr→∞

lim
p→∞

E(PI(u(n)
θ̂(reg)(p,ne ,nr ,D)

)) ⩽ PI(u⋆) + o
n→∞

(1).

▶ Conclusion: statistical accuracy + physical consistency
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34 / 38Setting
Regression model:
▶ Y = u⋆(X ) +N (0, 10−2)
▶ u⋆(x , t) = exp(t − x) + 0.1 cos(2πx) on Ω =]0, 1[2
▶ ((xi , ti ),Yi )1⩽i⩽n for 0 < ti < 0.5

Advection model:
▶ F (u, ·) = ∂xu + ∂tu
▶ h(x , 0) = exp(−x) and h(0, t) = exp(t)
▶ umodel(x , t) = exp(t − x)
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umodel u⋆



35 / 38Monitoring the risks

▶ Stability of the empirical risk R
(reg)
n,ne ,nr ⇒ p ≃ ∞

▶ Overfitting gap OGn,ne ,nr = |R(ridge)
n,ne ,nr − Rn|

⇒ choose the lowest possible λ(ridge)

▶ Illustration with n = 10

0 200 400 600 800 1000
Epoch p

6

4

2

0

2
ln(R(reg)

n, ne, nr
)

ln(OGn, ne, nr)
ln(PI)(n)
ln(err)(n)



36 / 38Result for n = 103
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umodel, u⋆, and regularized PINN estimator

▶ Convergence on supp(µX ) =]0, 1[×]0, 0.5[

▶ The regularized PINN follows the advection model (constant on the
characteristics x = t + cst)

▶ Flattening effect of the Sobolev regularization on Ω\supp(µX )



37 / 38Asymptotic in n

3 4 5 6 7
ln(n)

8.5

8.0

7.5

7.0

6.5
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5.0

ln
(e

rr)
(n

)

ln(err)(n)
Linear regression: 
 ln(err)(n) = -0.69 ln(n) -3.76

3 4 5 6 7
ln(n)

3.0
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2.4

2.2
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1.6

ln
(P

I)

ln(PI)(n)
ln(PI(u ))

As predicted by the theory:

▶ The convergence rate is less than −0.5
▶ The regularized PINN is more accurate than umodel for n > 10
▶ The physics inconsistency is bounded by the modeling error PI(u⋆)



38 / 38Thank you for your attention!

The slides and the corresponding paper are available
▶ on my website https://nathandoumeche.com
▶ on arXiv 2305.01240

Convergence and error analysis of PINNs (Doumèche, Biau, Boyer)

The implementation of
▶ the numerical illustrations
▶ in particular the Sobolev regularization
▶ is available on my Github.

https://nathandoumeche.com/
https://arxiv.org/abs/2305.01240
https://arxiv.org/abs/2305.01240
https://github.com/NathanDoumeche/Convergence_and_error_analysis_of_PINNs
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Degree of a monomial operator

The degree of a monomial operator F (u, x) = φ(x)×
∏N1

i=1 ∂
αiu(x),

where φ ∈ C∞(Ω̄,Rd2), is degF =
∑N1

i=1(1 + |αi |).

Degree of a polynomial operator

The degree of a polynomial operator F =
∑N2

i=1 Fi , where Fi is a
monomial operator, is degF = maxi deg(Fi ).

▶ deg(∂xu) = 2
▶ deg(uy∂yux) = 3
▶ deg(sin(x)ux + exp(x)∂2

x,yuy ) = 3



41 / 38Lax-Milgram for regularized PINNs
Prop (Characterization of the unique minimizer of R(reg)

n )

Assume that F1, . . . ,FM are affine operators of order K . i.e., Fk = F (lin)
k +Bk ,

that λt > 0 and m ⩾ max(⌊d1/2⌋,K). Then the regularized theoretical risk
R(reg)

n has a unique minimizer ûn over Hm+1(Ω,Rd2), satisfying

∀v ∈ Hm+1(Ω,Rd2), An(ûn, v) = Bn(v), where

An(ûn, v) =
λd

n

n∑
i=1

⟨Π̃(ûn)(Xi ), Π̃(v)(Xi )⟩+ λeE⟨Π̃(ûn)(X (e)), Π̃(v)(X (e))⟩

+
1
|Ω|

M∑
k=1

∫
Ω

F (lin)
k (ûn, x)F (lin)

k (v , x)dx

+
λt

|Ω|
∑

|α|⩽m+1

∫
Ω

⟨∂αûn(x), ∂αv(x)⟩dx ,

Bn(v) =
λd

n

n∑
i=1

⟨Yi , Π̃(v)(Xi )⟩+ λeE⟨Π̃(v)(X (e)), h(X (e))⟩

− 1
|Ω|

M∑
k=1

∫
Ω

Bk(x)F
(lin)
k (v , x)dx ,
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▶ Sobolev embedding Π̃ : Hm+1(Ω,Rd2) → C 0(Ω,Rd2), i.e., Π̃(u) is the
unique continuous function that coincides with u almost everywhere.

▶ Minimizing R
(reg)
n amounts to minimizing An − 2Bn

▶ Weak formulation on Hm+1(Ω,Rd2): if ûn ∈ H2(m+1)(Ω,Rd2), then
almost everywhere,

M∑
k=1

(F
(lin)
k )∗Fk(ûn, x) + λt

∑
|α|⩽m+1

(−1)|α|(∂α)2ûn(x) = 0.

(F (lin)
k )∗: adjoint operator of F (lin)

k , i.e., for all u, v ∈ C∞(Ω,R) with
v |∂Ω = 0, ∫

Ω

uF (lin)(v , x)dx =

∫
Ω

(F (lin)
k )∗(u, x)vdx .

▶ In the regime λt → 0, the solution of the PINN problem does not
satisfy the constraints Fk(u, x) = 0, but the slightly different ones∑M

k=1(F
(lin)
k )∗Fk(u, x) = 0.
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44 / 38PINNs v.s. data assimilation

PINNs
▶ Estimate the function u⋆ such that Y = u⋆(X ) + ε

Data assimilation (Cressman analysis, optimal interpolation, Kalman...)
▶ Propagate a forecast with a model, then apply corrections from new

observations (innovation)

Similarities:
▶ Enhancing a statistical model with physics
▶ Noisy observations + imperfect model

Differences:
▶ Data assimilation has an inherent time-series structure
▶ Data assimilation are used for non-reproducible experiments
▶ Data assimilation needs to have a complete system of equations
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