Towards instance-dependent approximation guarantees for scientific machine learning using Lipschitz neural networks

P. Novello, IRT Saint Exupery
C. Gauchy, CEA
M. Dalery, Laboratoire de Mathématiques de Besançon
M. Peyron, CERFACS \& EVIDEN
S. Saha, Indian Statistical Institute

Challenges of SciML

Scientific Machine Learning is thriving [2] ...

- Extends traditional surrogate modeling and function approximation to larger scale problems (mesh data) [5,7].
- Encompasses new techniques like Physics informed learning ([5,6]., this workshop) to refine the quality of the approximation and foster practitioner's trust in those models
...but surrogate models and numerical schemes are not considered equals
- Such models are data driven and lack strict guarantees as seen classical numerical schemes
- Some workaround to leverage ML without affecting the guarantees: > ML-driven preconditioning [9], Mesh initialization [13],...

Still, the performances of next gen surrogate models are so good as is...
...Couldn't we provide strict approximation guarantees for SciML models?

We approximated a function $f: \mathcal{X} \in \mathbb{R}^{d} \rightarrow \mathbb{R}$ using a neural network g and a set of learning points $\left(X_{1}, Y_{1}=f\left(X_{1}\right)\right), \ldots,\left(X_{n}, Y_{n}=f\left(X_{n}\right)\right)$

Now, can we provide approximation guarantees after the training using g and $\left(X_{1}, Y_{1}=f\left(X_{1}\right)\right), \ldots,\left(X_{n}, Y_{n}=f\left(X_{n}\right)\right)$ only?
By finding bounds on

$$
J_{g}=\|f-g\|_{\infty}=\max _{x \in \mathcal{X}}\left|f(x)-g_{\theta}(x)\right|
$$

In the following, we try to bound $\|f-g\|_{\infty}$, the max. of the absolute error with a bound \bar{J}_{g}. To that end, we will leverage the properties of Lipschitz neural networks

Lipschitz Neural Networks

DEEL

A function f is said Lipschitz continuous, of constant K_{f} if:

$$
\forall x, y \in \mathbb{R}^{d},|f(x)-f(y)| \leq K_{f} \times\|x-y\|
$$

A neural network g is said K_{g}-Lipschitz when it satisfies the above property.

Its rate of change is bounded by K_{g}

Lipschitz Neural Networks

DEEL

Usual applications of Lipschitz neural networks:

- Improved (and certified) robustness to adversarial attacks [11]
- Better generalization for classification tasks [3]
- Better explainability [10]
- Perform well in Wasserstein distance estimation [3,11]

Original (class: w/o)

Minimum adversarial perturbation Classical neural net. (class: w)

Minimum adversarial perturbation Lipschitz neural net. (class: w)

Adversarial perturbation on CelebA dataset (binary classification of w vs w/o glasses

Lipschitz Neural Networks

DEEL

Usual applications of Lipschitz neural networks:

- Improved (and certified) robustness to adversarial attacks [11]
- Better generalization for classification tasks [3]
- Better explainability [10]
- Perform well in

Wasserstein distance estimation [3,11]

Generalization gap for Lipschitz NN with different
K_{g} vs a classical neural network (in red)

Lipschitz Neural Networks

Usual applications of Lipschitz neural networks:

- Improved (and certified) robustness to adversarial attacks [11]
- Better generalization for classification tasks [3]
- Better explainability [10]
- Perform well in Wasserstein distance estimation [3,11]

(a) OTNN

(b) Unconstrained

Explanation maps for a Lipschitz network (OTNN) vs a classical network (Unconstrained)

Lipschitz Neural Networks

DEEL

Usual applications of Lipschitz neural networks:

- Improved (and certified) robustness to adversarial attacks [11]
- Better generalization for classification tasks [3]
- Better explainability [10]
- Perform well in Wasserstein distance estimation [3,11]

Wasserstein-1 distance:

$$
W_{1}(\mu, \eta)=\max _{f \in L_{1}} \int f(x) d(\mu-\eta)(x)
$$

Can be found by approximating the set of 1-Lipschitz functions with 1-Lipschitz neural nets and perform the optimization

Motivation: Error bound in 1D

DEEL

Take the difference between maximum variation of f and g on each subdivision:

$$
J_{g} \leq \max _{i \in\{1, \ldots, n\}} \frac{1}{2}\left(K_{g}+K_{f}\right)\left\|X_{i}-X_{i-1}\right\|+\left|f\left(X_{i}\right)-g\left(X_{i}\right)\right|=\begin{gathered}
=0 \text { in this } \\
\text { example }
\end{gathered}
$$

Motivation: Error bound in 2D (and beyond)

DEEL

${ }^{X_{i-1, j-1}}{ }^{\text {d }}$	${ }^{X_{i, j-1}}$	${ }^{X_{i+1, j-1}}$
		${ }_{X_{i+1, j}}$
${ }^{X_{i-1, j+1}}$	${\stackrel{ }{X_{i, j+1}}}$	${ }^{X_{i+1, j+1}}$

Bound in 2D $(d=2)$:

- Consider n^{2} learning points $\left\{X_{i, j}\right\}_{i, j \in\{1, \ldots n\}^{\wedge 2}}$ at the center of a grid with cells of edge size h.

In the k-th cell of center $X_{i, j}$:

$$
J_{g}^{k} \leq\left|f\left(X_{i, j}\right)-g\left(X_{i, j}\right)\right|+\frac{1}{\sqrt{2}}\left(K_{f}+K_{g}\right) h=J_{g}^{k}
$$

Bound in ND $(d=N)$:
In the k-th cell of center X_{p} :

$$
J_{g}^{k} \leq\left|f\left(X_{p}\right)-g\left(X_{p}\right)\right|+\frac{\sqrt{N}}{2}\left(K_{f}+K_{g}\right) h=J_{g}^{k}
$$

Then,

$$
J_{g} \leq \max _{k} \bar{J}_{g}^{k}
$$

Breaking free from grids

DEEL

Main problem: Learning points are rarely structured as a grid
What about learning in the context of Scientific ML?
We control the design of experiment so we could build it as a grid Very constraining:

- The DOE should be defined in advance and we could not add points sequentially
- Gridcsर्ffer trom the curse of dimensionality, the number of f evaluations would grow exponentially with d
- Monte Carlo is convenient

Aim of this work: find ways to build upper bounds for J_{g} when $\left(X_{1}, Y_{1}=f\left(X_{1}\right)\right), \ldots,\left(X_{n}, Y_{n}=f\left(X_{n}\right)\right)$ is not structured as a grid

Outline

DEEL
$>$ Introduction
$>$ Error bound with Voronoï diagrams
$>$ Overcoming Voronoï diagrams complexity
> Conclusion \& Takeaway

Definition of a Voronoï diagram (and some notations)
 DEEL

A Voronoï diagram \mathcal{V}^{d} is built on a set of points $\mathbf{X}=$ $\left\{X_{1}, \ldots, X_{n}\right\}, \mathrm{X}_{\mathrm{i}} \in \mathcal{X} \subset \mathbb{R}^{d}$.

Each point is called a site, and the diagram is defined by its cells $\left\{\mathcal{V}^{d}\left(X_{1}\right), \ldots, \mathcal{V}^{d}\left(X_{n}\right)\right\}$ themselves defined by
$\mathcal{V}^{d}\left(X_{i}\right)=\left\{x \in \mathcal{X} \mid \forall j \in\{1, \ldots, n\},\left\|x-X_{i}\right\| \leq\left\|x-X_{j}\right\|\right\}$
If $x \in \mathcal{V}^{d}\left(X_{i}\right)$, then X_{i} is the nearest neighbor of x
We have that $\mathcal{X}=\cup_{i \in\{1, \ldots, n\}} \mathcal{V}^{d}\left(X_{i}\right)$, so to obtain \bar{J}_{g}, it is enough finding \bar{J}_{g}^{i}, an upper bound for

$$
J_{g}^{i}=\max _{x \in \mathcal{V}^{d}\left(X_{i}\right)}|f(x)-g(x)|
$$

Error bound using Voronoï diagram

DEEL

Let $N: x \rightarrow \arg \min _{X_{i} \in \mathbf{X}}\left\|x-X_{i}\right\| \quad$ (nearest neighbormap)
Then by the Lipschitz property of g and f, we have that $\forall x \in \mathcal{X}$,

$$
\begin{aligned}
|f(x)-g(x)| \leq & \left(K_{f}+K_{g}\right)\|x-N(x)\|+ \\
& |f(N(x))-g(N(x))|
\end{aligned}
$$

Goes well with
Let $r\left(X_{i}\right)$ be the radius of $\mathcal{V}^{d}\left(X_{i}\right)$ defined by
Voronoï diag!

$$
r\left(X_{i}\right)=\max _{x \in \mathcal{V}^{d}\left(X_{i}\right)}\left\|x-X_{i}\right\|
$$

Then, it holds that

$$
J_{g}^{i} \leq\left|f\left(X_{i}\right)-g\left(X_{i}\right)\right|+\left(K_{f}+K_{g}\right) r\left(X_{i}\right)
$$

Hence,

$$
J_{g} \leq \max _{i \in\{1, \ldots, n\}}\left|f\left(X_{i}\right)-g\left(X_{i}\right)\right|+\left(K_{f}+K_{g}\right) r\left(X_{i}\right)
$$

$>$ All we need is to compute $r\left(X_{i}\right)$

Experiments on toy functions

Sinus function

$$
f: x, y \rightarrow \sin (x) \times \sin (y)
$$

10000 training points

Experiments on toy functions

Holder table function

$$
\begin{gathered}
f: x, y \rightarrow\left|\sin (x) \cos (y) \exp \left(\left|1-\frac{\sqrt{x^{2}+y^{2}}}{\pi}\right|\right)\right| \\
10000 \text { training points }
\end{gathered}
$$

Complexity of Voronoï diagrams

DEEL

Upper bound of L_{∞} error with computation time for Sinus function (left) and Holder table function (right)

Problem: Voronoï diagram's complexity is exponential... \ldots what about higher d and n ?

Learning heat diffusion

DEEL

Diffusion in 2D:

$$
\frac{\partial u}{\partial t}=D\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)
$$

$>$ We simulate heat diffusion on a homogeneous surface, with 4 Dirichlet boundary conditions and observe the field at convergence.
$>$ The final heat field depends on the boundary conditions, but not on the initial state nor the diffusivity.

Design of experiment:

$>$ Sample $n=5000$ boundary conditions $\left\{\left(a_{i}, b_{i}, c_{i}, d_{i}\right)\right\}_{i \in\{1, \ldots, n\}}$ uniformly on $[0,1]^{4}$.
$>$ Conduct n simulations on a $p \times p$ grid $(p=32)$, yielding a temperature field $\left\{T_{j k}\right\}_{j, k \in\{1, \ldots, p\}^{2}}$.
Training dataset:
$>$ A subset of $n \times p \times p / 10=512,000$ points $\left\{\left(a_{i}, b_{i}, c_{i}, d_{i}, x_{j}, x_{k}\right), T_{j, k}\right\}_{i \in\{1, \ldots, n\}, j, k \in\{1, \ldots, p\}^{2}}$

Approximation results

DEEL

How to handle unknown K_{f} ?

DEEL

Two ways:

1. Empirical estimation of Lipschitz constant using:

$$
\widehat{K_{f}}=\max _{i \in\{1, \ldots, n\}}\left(\max _{X \in \mathcal{N}_{k}\left(X_{i}\right)} \frac{\left|f(X)-f\left(X_{i}\right)\right|}{\left\|X-X_{i}\right\|}\right)
$$

Where $\mathcal{N}_{k}\left(X_{i}\right)$ is the set of the k-th nearest neighbors of X_{i}.
2. Hypotheses of f :

- In [8], the authors compute the Lipschitz constant of f when it is a Gaussian Process interpolating the data.
- Could apply to polynomial regression
- We might find the Lipschitz constant by studying the physics [4]

Error bound

DEEL

Lipschitz network, MSE $=6.3 \times 10^{-5}$
$>$ Maximum empirical L_{1} error: 0.17
Voronoï diagram with a subset of 20000 points. Takes ≈ 3000 seconds (exponential complexity...)
$>$ Error bound: 84!! Not very appealing...
$>$ We have to find workarounds to use all the $n \times p \times p=5,120,000$ points

Outline

$>$ Introduction
$>$ Error bound with Voronoï diagrams
> Overcoming Voronoï diagrams complexity
$>$ Mixed random and mesh datasets
$>$ Mapping to grid (for a tighter bound?)
> Conclusion \& Takeaway

Mixed random and mesh datasets

Suppose that you have a set of points $\mathbf{X}^{d}=$ $\left\{X_{1}^{d}, \ldots, X_{n}^{d}\right\}$ uniformly sampled on a domain $[0,1]^{d}$.

Then define the set of points

$$
\mathbf{X}^{d+1}=\left\{X_{i, j}^{d+1}\right\}_{i \in\{1, \ldots, n\}, j \in\{1, \ldots, p\}}
$$

such that

$$
X_{i, j}^{d+1}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}, x_{j}\right)
$$

where $X_{i}^{d}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}\right)$
Now consider a set of points $\left\{x_{1}, \ldots, x_{p}\right\}$ evenly spaced on $[0,1]$.

Mixed random and mesh datasets

D

Example: numerical simulation

Suppose that you have a set of points $\mathbf{X}^{d}=$ $\left\{X_{1}^{d}, \ldots, X_{n}^{d}\right\}$ uniformly sampled on a domain $[0,1]^{d}$.

Now consider a set of points $\left\{x_{1}, \ldots, x_{p}\right\}$ evenly spaced on $[0,1]$.

Then define the set of points

$$
\mathbf{X}^{d+1}=\left\{X_{i, j}^{d+1}\right\}_{i \in\{1, \ldots, n\}, j \in\{1, \ldots, p\}}
$$

such that
$X_{i, j}^{d+1}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}, x_{j}\right)$,
where $X_{i}^{d}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}\right)$

- Sample n different boundary conditions uniformly $\left\{\partial b_{1}, \ldots, \partial b_{n}\right\}$
- compute the n simulations on a mesh of size $p \times p$
$>n \times p \times p$ learning points $\left\{\left(x_{i}, y_{j}, \partial b_{k}\right)\right\}_{i}$

Mixed random and mesh datasets

DEEL
Define the set of points

$$
\mathbf{X}^{d+1}=\left\{X_{i, j}^{d+1}\right\}_{i \in\{1, \ldots, n\}, j \in\{1, \ldots, p\}}
$$

such that

$$
X_{i, j}^{d+1}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}, x_{j}\right)
$$

Now, consider \mathcal{V}^{d} the Voronoï diagram of $\left\{X_{1}^{d}, \ldots, X_{n}^{d}\right\}$ and $r\left(X_{i}^{d}\right)$ the radius of $\mathcal{V}^{d}\left(\mathrm{X}_{\mathrm{i}}^{d}\right)$.

Then: $\forall i \in\{1, \ldots, n\}, \forall j, k \in\{1, \ldots, p\}^{2}$,

$$
r\left(X_{i, j}^{d+1}\right)=r\left(X_{i, k}^{d+1}\right)=\sqrt{\frac{1}{4 p^{2}}+r\left(X_{i}^{d}\right)^{2}}
$$

Mixed random and mesh datasets

DEEL

Define the set of points

$$
\mathbf{X}^{d+1}=\left\{X_{i, j}^{d+1}\right\}_{i \in\{1, \ldots, n\}, j \in\{1, \ldots, p\}}
$$

such that

$$
X_{i, j}^{d+1}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}, x_{j}\right)
$$

Now, consider \mathcal{V}^{d} the Voronoï diagram of $\left\{X_{1}^{d}, \ldots, X_{n}^{d}\right\}$ and $r\left(X_{i}^{d}\right)$ the radius of $\mathcal{V}^{d}\left(\mathrm{X}_{\mathrm{i}}^{d}\right)$.

Then: $\forall i \in\{1, \ldots, n\}, \forall j, k \in\{1, \ldots, p\}^{2}$,

$$
r\left(X_{i, j}^{d+1}\right)=r\left(X_{i, k}^{d+1}\right)=\sqrt{\frac{1}{4 p^{2}}+r\left(X_{i}^{d}\right)^{2}}
$$

In that case, we only need to compute the Voronoï diagram \mathcal{V}^{d} for $\left\{X_{i}^{d}\right\}_{i \in\{1, \ldots, n\}}$ to obtain $r\left(X_{i, j}^{d+1}\right)$ and compute the bound!

Practical consequences:
$>$ Compute a Voronoï diagram in dimension $d+1$ with $\mathrm{n} \times p$ points

Becomes

$>$ Compute a Voronoï diagram in dimension d with n points

Mixed random and mesh datasets

DEEL
Define the set of points

$$
\mathbf{X}^{d+1}=\left\{X_{i, j}^{d+1}\right\}_{i \in\{1, \ldots, n\}, j \in\{1, \ldots, p\}}
$$

such that

$$
X_{i, j}^{d+1}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}, x_{j}\right)
$$

Now, consider \mathcal{V}^{d} the Voronoï diagram of $\left\{X_{1}^{d}, \ldots, X_{n}^{d}\right\}$ and $r\left(X_{i}^{d}\right)$ the radius of $\mathcal{V}^{d}\left(\mathrm{X}_{\mathrm{i}}^{d}\right)$.

In that case, we only need to compute the Voronoï diagram \mathcal{V}^{d} for $\left\{X_{i}^{d}\right\}_{i \in\{1, \ldots, n\}}$ to obtain $r\left(X_{i, j}^{d+1}\right)$ and compute the bound!

Practical consequences:
For a 2D Grid

Then: $\forall i \in\{1, \ldots, n\}, \forall j, k \in\{1, \ldots, p\}^{2}$,

$$
r\left(X_{i, j}^{d+1}\right)=r\left(X_{i, k}^{d+1}\right)=\sqrt{\frac{1}{4 p^{2}}+r\left(X_{i}^{d}\right)^{2}}
$$

Mixed random and mesh datasets

DEEL
Define the set of points

$$
\mathbf{X}^{d+1}=\left\{X_{i, j}^{d+1}\right\}_{i \in\{1, \ldots, n\}, j \in\{1, \ldots, p\}}
$$

such that

$$
X_{i, j}^{d+1}=\left(\left(X_{i}^{d}\right)_{1}, \ldots,\left(X_{i}^{d}\right)_{d}, x_{j}\right)
$$

Now, consider \mathcal{V}^{d} the Voronoï diagram of $\left\{X_{1}^{d}, \ldots, X_{n}^{d}\right\}$ and $r\left(X_{i}^{d}\right)$ the radius of $\mathcal{V}^{d}\left(\mathrm{X}_{\mathrm{i}}^{d}\right)$.

In that case, we only need to compute the Voronoï diagram \mathcal{V}^{d} for $\left\{X_{i}^{d}\right\}_{i \in\{1, \ldots, n\}}$ to obtain $r\left(X_{i, j}^{d+1}\right)$ and compute the bound!

Practical consequences:
For a 3D Grid

Then: $\forall i \in\{1, \ldots, n\}, \forall j, k \in\{1, \ldots, p\}^{2}$,

$$
r\left(X_{i, j}^{d+1}\right)=r\left(X_{i, k}^{d+1}\right)=\sqrt{\frac{1}{4 p^{2}}+r\left(X_{i}^{d}\right)^{2}}
$$

Results on Heat Diffusion

	Classical Voronoï	Mixed random/mesh
Nb points used	20×10^{3}	$512 \times \mathbf{1 0}^{4}$
Total eval time (sec.)	>3000	$\mathbb{1 . 7 2}$
Max L_{1} error (est.)	0.1716	0.1716
Upper bound	84	$\mathbb{1 . 6 3 2 0}$

Results of the different methods for computing \bar{J}_{g}

What if we cannot leverage a mixed grid-random dataset structure?

Mapping to grid

Let's consider $\mathbf{X}=\left\{X_{1}, \ldots, X_{n}\right\}$ uniformly distributed on $[0,1]^{d}$.

By lemma $1, \forall x \in[0,1]^{d}$,

$$
\begin{array}{r}
|f(x)-g(x)| \leq\left(K_{f}+K_{g}\right)\|x-N(x)\|+ \\
|f(N(x))-g(N(x))|
\end{array}
$$

We can do better because we can evaluate $g(x)$!

$$
\begin{aligned}
& \forall x \in[0,1]^{d} \text {, } \\
& \qquad|f(x)-g(x)| \leq K_{f}\|x-N(x)\|+|g(x)-g(N(x))|+ \\
& \text { Lemma 2 } \quad|f(N(x))-g(N(x))|
\end{aligned}
$$

Now, consider a grid of p^{d} cells with centers
$\left\{c_{1}, \ldots, c_{p} d\right\}$

Mapping to grid

DEEL

Now, consider a grid of p^{d} cells $\left\{C_{1}, \ldots, C_{p^{d}}\right\}$ with centers $\left\{c_{1}, \ldots, c_{p} d\right\}$
$\forall k \in\left\{1, \ldots, p^{2}\right\}$,

$$
\begin{aligned}
\left|f\left(c_{k}\right)-g\left(c_{k}\right)\right| \leq & K_{f}\left\|c_{k}-N\left(c_{k}\right)\right\|+ \\
& \left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|+ \\
& \left|f\left(N\left(c_{k}\right)\right)-g\left(N\left(c_{k}\right)\right)\right|
\end{aligned}
$$

Mapping to grid

DEEL

Now, consider a grid of p^{d} cells $\left\{C_{1}, \ldots, C_{p^{d}}\right\}$ with centers $\left\{c_{1}, \ldots, c_{p} d\right\}$
$\forall k \in\left\{1, \ldots, p^{2}\right\}$,

$$
\begin{aligned}
\left|f\left(c_{k}\right)-g\left(c_{k}\right)\right| \leq & K_{f}\left\|c_{k}-N\left(c_{k}\right)\right\|+ \\
& \left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|+ \\
& \left|f\left(N\left(c_{k}\right)\right)-g\left(N\left(c_{k}\right)\right)\right|
\end{aligned}
$$

Mapping to grid

DEEL

Now, consider a grid of p^{d} cells $\left\{C_{1}, \ldots, C_{p^{d}}\right\}$ with centers $\left\{c_{1}, \ldots, c_{p} d\right\}$
$\forall k \in\left\{1, \ldots, p^{2}\right\}$,

$$
\begin{aligned}
\left|f\left(c_{k}\right)-g\left(c_{k}\right)\right| \leq & K_{f}\left\|c_{k}-N\left(c_{k}\right)\right\|+ \\
& \left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|+ \\
& \left|f\left(N\left(c_{k}\right)\right)-g\left(N\left(c_{k}\right)\right)\right|
\end{aligned}
$$

Mapping to grid

DEEL

Now, consider a grid of p^{d} cells $\left\{C_{1}, \ldots, C_{p^{d}}\right\}$ with centers $\left\{c_{1}, \ldots, c_{p} d\right\}$
$\forall k \in\left\{1, \ldots, p^{2}\right\}$,

$$
\begin{aligned}
\left|f\left(c_{k}\right)-g\left(c_{k}\right)\right| \leq & K_{f}\left\|c_{k}-N\left(c_{k}\right)\right\|+ \\
& \left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|+ \\
& \left|f\left(N\left(c_{k}\right)\right)-g\left(N\left(c_{k}\right)\right)\right|
\end{aligned}
$$

Since we know that $\forall x \in C_{k}$,

$$
\begin{array}{r}
|f(x)-g(x)| \leq\left|f\left(c_{k}\right)-g\left(c_{k}\right)\right|+ \\
\frac{\sqrt{d}}{2 p}\left(K_{f}+K_{g}\right)
\end{array}
$$

Mapping to grid

DEEL

Now, consider a grid of p^{d} cells $\left\{C_{1}, \ldots, C_{p^{d}}\right\}$ with centers $\left\{c_{1}, \ldots, c_{p} d\right\}$
$\forall k \in\left\{1, \ldots, p^{2}\right\}$,

$$
\begin{aligned}
\left|f\left(c_{k}\right)-g\left(c_{k}\right)\right| \leq & K_{f}\left\|c_{k}-N\left(c_{k}\right)\right\|+ \\
& \left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|+ \\
& \left|f\left(N\left(c_{k}\right)\right)-g\left(N\left(c_{k}\right)\right)\right|
\end{aligned}
$$

We have that $\forall x \in C_{k}$,

$$
\begin{aligned}
|f(x)-g(x)| \leq & K_{f} \| c_{k}-N\left(c_{k}\right)| |+ \\
& \left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|+ \\
& \left|f\left(N\left(c_{k}\right)\right)-g\left(N\left(c_{k}\right)\right)\right|+ \\
& \frac{\sqrt{d}}{2 p}\left(K_{f}+K_{g}\right)
\end{aligned}
$$

Mapping to grid

$|f(x)-g(x)| \leq K_{f}\left\|c_{k}-N\left(c_{k}\right)\right\|+\underbrace{\begin{array}{c}\text { Requires evaluations } \\ \text { of } g\left(c_{k}\right) \text {, which can be } \\ \text { done in batch very } \\ \text { efficiently }\end{array}}_{\begin{array}{c}\text { Requires calls to a } \\ \text { nearest neighbor } \\ \text { algorithm to find } \\ N\left(c_{k}\right)\end{array}} \begin{gathered}\text { By definition, } N\left(c_{k}\right) \in \mathbf{X} .\end{gathered}$

Computational efforts needed:

- Nearest neighbor algorithm
> Many very efficient libraries (immensely cheaper than Voronoï diagram - complexity not exponential)
> The bound is still valid with approximate nearest neighbors
- Evaluation of g
> Very efficient on GPU

Mapping to grid

$\forall x \in C_{k}$,

$$
|f(x)-g(x)| \leq K_{f}\left\|c_{k}-N\left(c_{k}\right)\right\|+\left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|+\left|f\left(N\left(c_{k}\right)\right)-g\left(N\left(c_{k}\right)\right)\right|+\frac{\sqrt{d}}{p}\left(K_{f}+K_{g}\right)
$$

Computational efforts needed:

- Nearest neighbor algorithm
> Many very efficient libraries (immensely cheaper than Voronoï diagram - complexity not exponential)
> The bound is still valid with approximate nearest neighbors
- Evaluation of g
> Very efficient on GPU

Beneficial side effect:

We were able to replace $K_{g}\left\|c_{k}-N\left(c_{k}\right)\right\|$ with $\left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right|$, which can make the bound tighter since by definition, $\left|g\left(c_{k}\right)-g\left(N\left(c_{k}\right)\right)\right| \leq K_{g}\left\|c_{k}-N\left(c_{k}\right)\right\|$

Results on Toy functions

DEAL

Upper bound of L_{∞} error with computation time for Sinus function (left) and Holder table function (right).
The grid used is of size 1000×1000.

Best upper bound (Voronoï): 0.098
Best upper bound (grid mapping): 0.107
High sample estimation: 0.087

Best upper bound (Voronoï): 0.53 Best upper bound (grid mapping): 0.53 High sample estimation: 0.42

Results on Heat Diffusion

	Classical Voronoï	Mixed random/mesh	Grid mapping	Grid mapping
Nb points used	20×10^{3}	$\mathbf{5 1 2 \times \mathbf { 1 0 } ^ { \mathbf { 4 } }}$	512×10^{3}	$512 \times \mathbf{1 0}^{4}$
Total eval time (sec.)	>3000	$\mathbf{1 . 7 2}$	$37+80$	$385+80$
Max L_{1} error (est.)	0.1716	0.1716	0.1716	0.1716
Upper bound	84	1.6320	1.3014	$\mathbf{1 . 1 9 5 3}$

Results of the different methods for computing \bar{J}_{g} (+80 is the time for net predictions on the grid)
For Approx. Voronoï, we used a grid of size $p=14$
$>$ Computed nearest neighbors for 7,529,536 points
> Used faiss ${ }^{1}$ library on GPU

Takeaways - conclusions

We built algorithms to compute strict uniform upper bounds for $\|f-g\|_{\infty}$, where g is a Lipschitz neural net approximating for f. Can be very tight for low dimension.
> Voronoï based, very costly because of Voronoï diagram's exponential complexity.
> Can be made way cheaper by leveraging the mesh structure of some data dimensions.
> Can be relaxed by building a grid and bounding each center's error.

Perspectives:

- The method is applicable to any K-lip model like Gaussian Processes [8] or Polynomial interpolation.
- The algorithms make it possible to locate the error, which could be useful for active learning (we could provably reduce the error bound) or sequential optimization.
- Estimation of K_{f} :
> build local estimators to refine the bound, possibly using interpolators [8].
$>$ Could we find K_{f} by using underlying PDEs knowledge [4]?
- Goes well with the Neural Implicit Representation approach. Could be paired with neural operator learning by low dimension parametrization of boundary conditions/initialization.
- Hybridization between ML and classical solvers

References

1. Anil, Cem, James Lucas, and Roger Grosse. "Sorting out Lipschitz Function Approximation."ICML, June 11, 2019. https://doi.org/10.48550/arXiv.1811.05381.
2. Baker, Nathan, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar, et al. "Workshop Report on Basic Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence," February 2019. https://doi.0rg/10.2172/1478744.
3. Béthune, Louis, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, and Alberto González-Sanz. "Pay Attention to Your Loss: Understanding Misconceptions about 1-Lipschitz Neural Networks."NeurIPS, October 17, 2022. https://doi.org/10.48550/arXiv.2104.05097.
4. Bunin, Gene A., and Grégory François. "Lipschitz Constants in Experimental Optimization." arXiv, January 14, 2017.
https://doi.org/10.48550/arXiv.1603.07847.
5. Goswami, Somdatta, Aniruddha Bora, Yue Yu, and George Em Karniadakis. "Physics-Informed Deep Neural Operator Networks." arXiv, July 17, 2022. http://arxiv.org/abs/2207.05748.
6. Karniadakis, George, Yannis Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. "Physics-Informed Machine Learning," May 24, 2021, 1-19. https://doi.org/10.1038/s42254-021-00314-5.
7. Kovachki, Nikola, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. "Neural Operator: Learning Maps Between Function Spaces." arXiv, April 7, 2023. http://arxiv.org/abs/2108.08481.
8. Lederer, Armin, Jonas Umlauft, and Sandra Hirche. "Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control."NeurIPS, December 19, 2019. http://arxiv.org/abs/1906.01376.
9. Li, Yichen, PeterYichen Chen, Tao Du, and Wojciech Matusik. "Learning Preconditioners for Conjugate Gradient PDE Solvers." In Proceedings of the 40th International Conference on Machine Learning, 19425-39. PMLR, 2023. https://proceedings.mlr.press/v202/li2ze.html.
10. Serrurier, Mathieu, Franck Mamalet, Thomas Fel, Louis Béthune, and Thibaut Boissin. "On the Explainable Properties of 1-Lipschitz Neural Networks: An Optimal Transport Perspective."NeurIPS, June 22, 2023. https://doi.org/10.48550/arXiv.2206.06854.
11. Serrurier, Mathieu, Franck Mamalet, Alberto Gonzalez-Sanz, Thibaut Boissin, Jean-Michel Loubes, and Eustasio del Barrio. "Achieving Robustness in Classification Using Optimal Transport with Hinge Regularization." In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 505-14. Nashville, TN, USA: IEEE, 2021. https://doi.org/10.1109/CVPR46437.2021.00057.
12. Wang, Ruigang, and Ian Manchester. "Direct Parameterization of Lipschitz-Bounded Deep Networks." In Proceedings of the 40th International Conference on Machine Learning, 36093-110. PMLR, 2023. https://proceedings.mlr.press/v202/wang23v.html.
13. Novello, Paul, Gaël Poëtte, David Lugato, Simon Peluchon, and Pietro Marco Congedo. "Accelerating Hypersonic Reentry Simulations Using Deep Learning-Based Hybridization (with Guarantees)." Journal of Computational Physics, September 30, 2022. https://doi.org/10.48550/arXiv.2209.13434.

Construction of 1-Lipschitz neural networks

DEIL

Classical fully connected neural network:

Construction of 1-Lipschitz neural networks

Classical fully connected neural network:

$$
\left\{\begin{array}{cll}
g(x)=g_{l} \circ g_{l-1} \circ \cdots \circ g_{1}(x) & & \text { Activation function } \sigma_{k} \\
g_{k}(x)=\sigma_{k}\left(W_{k} \cdot x+b_{k}\right) & \text { with (for layer } k): & \text { - Weights matrix } W_{k} \\
& & \text { Bias vector } b_{k}
\end{array}\right.
$$

How to make it 1-Lipschitz?
> Ensure that each g_{k} is 1 -Lipschitz
\checkmark Most activation functions are 1-Lipschitz
\checkmark Bias is a simple shift
\checkmark What about the weights?
The naïve way:
During training, set $W_{k} \leftarrow \frac{W_{k}}{\left\|W_{k}\right\|}$, where $\left\|W_{k}\right\|$ is the spectral norm of W_{k}.

Construction of 1-Lipschitz neural networks

How to make it 1-Lipschitz?
\Rightarrow Ensure that each g_{k} is $\mathbb{1}$-Lipschitz
The naïve way:
During training, set $W_{k} \leftarrow \frac{W_{k}}{\left\|W_{k}\right\|^{\prime}}$ where $\left\|W_{k}\right\|$ is the spectral norm of W_{k}.

Problem: Eigenspaces of successive W_{k} may not be aligned: $>$ it might happen that $K_{g} \ll 1$

Construction of 1-Lipschitz neural networks

DEEL

The orthogonal neural networks way:

During training, enforce orthonormality of each W_{k} [1].
$>$ Implemented in deel-torchlip ${ }^{1}$ using Bjork orthonormalization algorithm at each training iteration
$>$ Use GroupSort [1] activation function, whose gradient is always 1
\Rightarrow In that case, $\boldsymbol{K}_{g}=\mathbf{1}!!$
Problem: Enforcing orthonormality has an effect on the class of function g can approximate
> might hinder expressivity for regression tasks...
$>$ And orthonormalization is an iterative algorithm so prone to error if not converged
$>$ And it takes more time to train

Construction of 1-Lipschitz neural networks

The « sandwich » layers way [12]:

Direct parametrization of W_{k} by trainable $\left\{X_{k}, Y_{k}, b_{k}, d_{k}\right\}$ such that the whole network g is K_{g}-Lipschitz. $>$ Each layer can be $>K_{g}$-Lipschitz, the whole network will still be K_{g} Lipschitz.
> Very efficient, only involve matrix multiplication.
> The constraint is enforced by design (no approximation).
> ... And each layer (kind of) looks like a sandwich.

$\left[\begin{array}{c}X_{k} \\ Y_{k}\end{array}\right] \in \mathbb{R}^{\left(n_{k+1}+n_{k}\right) \times n_{k+1}}$
$\mathbb{R}^{N} \ni \theta:=\left\{\left(X_{k}, Y_{k}, b_{k}, d_{k}\right)\right\}_{0 \leq k \leq L} \xrightarrow{\mathcal{M}} \phi:=\left\{\left(W_{k}, b_{k}\right)\right\}_{0 \leq k \leq L}$
A "sandwich" layer [12]

Construction of 1-Lipschitz neural networks

DEIL

How to make it 1-Lipschitz?

1. The orthogonal neural networks way
2. The sandwich layers way

How to make it K-Lipschitz ?
$>$ Let each g_{k} be $\sqrt[l]{K}$-Lipschitz.
Have to know in advance the desired value of K
$>$ Let g_{l} be K-Lipschitz (by alleviating constraints on W_{l})
K can be learnt

