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Challenges of SciML

2

Scientific Machine Learning is thriving [2] …
o Extends traditional surrogate modeling and function approximation to larger scale 

problems (mesh data) [5,7].
o Encompasses new techniques like Physics informed learning ([5,6]., this workshop) to 

refine the quality of the approximation and foster practitioner’s trust in those models

…but surrogate models and numerical schemes are not considered equals
o Such models are data driven and lack strict guarantees as seen classical numerical 

schemes
o Some workaround to leverage ML without affecting the guarantees:

Ø ML-driven preconditioning [9], Mesh initialization [13],…

…Couldn’t we provide strict approximation guarantees for SciML models? 
Still, the performances of next gen surrogate models are so good as is…



Finding an uniform error bound for 𝑔
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We approximated a function 𝑓:𝒳 ∈ ℝ! → ℝ using a neural network 𝑔 and a set of 
learning points 𝑋", 𝑌" = 𝑓 𝑋" , … , 𝑋#, 𝑌# = 𝑓 𝑋#

Now, can we provide approximation guarantees  after the training using 𝒈 and        
𝑿𝟏, 𝒀𝟏 = 𝒇 𝑿𝟏 , … , 𝑿𝒏, 𝒀𝒏 = 𝒇 𝑿𝒏 only?

By finding bounds on 

𝐽& = 𝑓 − 𝑔 ' = max
(∈𝒳

𝑓 𝑥 − 𝑔+ 𝑥

In the following, we try to bound 𝑓 − 𝑔 ', the max. of the absolute error with a bound �̅�𝒈.
To that end, we will leverage the properties of Lipschitz neural networks



Lipschitz Neural Networks
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A function 𝑓 is said Lipschitz continuous, of constant 𝐾- if :

∀𝑥, 𝑦 ∈ ℝ!, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝐾-× 𝑥	 − 𝑦

A neural network 𝑔 is said 𝐾&-Lipschitz when it satisfies the above property.

Its rate of change is 
bounded by 𝐾&

𝐾&
𝑑𝑔
𝑑𝑥

𝑥
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Lipschitz Neural Networks

o Improved (and certified) 
robustness to adversarial 
attacks [11]

o Better generalization for 
classification tasks [3]

o Better explainability [10]
o Perform well in 

Wasserstein distance 
estimation [3,11]

Usual applications of Lipschitz neural networks:

Original
(class: w/o)

Minimum adversarial 
perturbation

Classical neural net.
(class: w)

Minimum adversarial 
perturbation

Lipschitz neural net.
(class: w)

Adversarial perturbation on CelebA dataset 
(binary classification of w vs w/o glasses
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Lipschitz Neural Networks

o Improved (and certified) 
robustness to adversarial 
attacks [11]

o Better generalization for 
classification tasks [3]

o Better explainability [10]
o Perform well in 

Wasserstein distance 
estimation [3,11]

Usual applications of Lipschitz neural networks:

Generalization gap for Lipschitz NN with different 
𝐾! vs a classical neural network (in red)
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Lipschitz Neural Networks

o Improved (and certified) 
robustness to adversarial 
attacks [11]

o Better generalization for 
classification tasks [3]

o Better explainability [10]
o Perform well in 

Wasserstein distance 
estimation [3,11]

Usual applications of Lipschitz neural networks:

Explanation maps for a Lipschitz network (OTNN) vs a 
classical network (Unconstrained)
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Lipschitz Neural Networks

o Improved (and certified) 
robustness to adversarial 
attacks [11]

o Better generalization for 
classification tasks [3]

o Better explainability [10]
o Perform well in 

Wasserstein distance 
estimation [3,11]

Usual applications of Lipschitz neural networks:

𝑊$ 𝜇, 𝜂 = 	max
%∈'!	

*𝑓 𝑥 𝑑(𝜇 − 𝜂)(𝑥)

Can be found by approximating the set of 1-Lipschitz 
functions with 1-Lipschitz neural nets and perform 

the optimization

Wasserstein-1 distance:
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Motivation: Error bound in 1D

𝐾"

𝐾! 𝑓(𝑥)

𝑥
𝑋#$% 𝑋# 𝑋#&%𝑋# + 𝑋#$%

2

𝐽& ≤ max
.∈{",…,#}

1
2 𝐾& + 𝐾- 𝑋. − 𝑋.3" + 𝑓(𝑋.) − 𝑔(𝑋.)

Take the difference between maximum variation of 𝑓 and 𝑔 on each subdivision:

𝑓(𝑋#$%)

𝑓(𝑋#)

= 0 in this 
example
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Motivation: Error bound in 2D (and beyond)

𝑋!,#𝑋!$%,#

𝑋!$%,#&% 𝑋!,#&% 𝑋!&%,#&%

𝑋!&%,#

𝑋!&%,#$%𝑋!,#$%𝑋!$%,#$%

ℎ

• Consider 𝑛' learning points 
𝑋!,# !,#∈{%,…+}^' at the center of a grid 

with cells of edge size ℎ.

In the 𝑘-th cell of center 𝑋!,#:

𝐽$% ≤ 𝑓 𝑋!,# − 𝑔 𝑋!,# +
1
2
𝐾& + 𝐾$ ℎ = ̅𝐽$%

1
2
ℎ

Bound in 𝟐D (𝒅 = 𝟐):

Bound in 𝑵D (𝒅 = 𝑵):
In the 𝑘-th cell of center 𝑋':

𝐽$% ≤ 𝑓 𝑋' − 𝑔 𝑋' + (
)

𝐾& + 𝐾$ ℎ = ̅𝐽$%

Then, 
𝐽& ≤	maxB

̅𝐽&B
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Breaking free from grids

Main problem: Learning points are rarely structured as a grid

What about learning in the context of Scientific ML? 

We control the design of experiment so we could build it as a grid
Very constraining:

o The DOE should be defined in advance and we could not add points sequentially
o Grids suffer from the curse of dimensionality, the number of 𝑓 evaluations would 

grow exponentially with 𝑑
o Monte Carlo is convenient

Aim of this work: find ways to build upper bounds for 𝐽& when 
𝑋", 𝑌" = 𝑓 𝑋" , … , 𝑋#, 𝑌# = 𝑓 𝑋# is not structured as a grid 
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Outline

Ø Introduction
Ø Error bound with Voronoï diagrams
Ø Overcoming Voronoï diagrams complexity
Ø Conclusion & Takeaway
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Definition of a Voronoï diagram (and some notations)

A Voronoï diagram 𝓥𝒅 is built on a set of points 𝐗 =
𝑋%, … , 𝑋+ , X/ ∈ 𝒳 ⊂ ℝ0.

Each point is called a site, and the diagram is defined by 
its cells {𝒱0(𝑋%), … , 𝒱0(𝑋+)} themselves defined by

𝒱0(𝑋!) 	= 𝑥 ∈ 𝒳 ∀𝑗 ∈ 1,… , 𝑛 , 𝑥	 − 𝑋! ≤ 𝑥	 − 𝑋# }

If 𝑥 ∈ 𝒱0(𝑋!), then 𝑋! is the nearest neighbor of 𝑥

We have that 𝒳 =	⋃!∈{%,…,+}𝒱0(𝑋!), so to obtain ̅𝐽1, 
it is enough finding ̅𝐽1! , an upper bound for 

𝐽1! = max
2∈𝒱'(5()

𝑓 𝑥 − 𝑔(𝑥)
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Error bound using Voronoï diagram 

Let 𝑟 𝑋! be the radius of	𝒱*(𝑋!) defined by
𝑟 𝑋! =	 max

+∈𝒱!(/")
𝑥	 − 𝑋!

Then, it holds that 
𝐽$! ≤ 𝑓 𝑋! − 𝑔 𝑋! + 𝐾& + 𝐾$ 𝑟(𝑋!)	

Hence, 
𝐽$ ≤ max

!∈{2,…,4}
𝑓 𝑋! − 𝑔 𝑋! + 𝐾& + 𝐾$ 𝑟(𝑋!)

Ø All we need is to compute 𝑟(𝑋!)

Let 𝑁: 𝑥 → 𝑎𝑟𝑔min
/"∈𝐗

𝑥 − 𝑋! (nearest neighbor map)

Then by the Lipschitz property of 𝑔 and 𝑓, we have that ∀𝑥 ∈ 𝒳,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& + 𝐾$ 𝑥	 − 𝑁 𝑥 +
  𝑓 𝑁 𝑥 − 𝑔(𝑁 𝑥 ) 	Lemma 1

Goes well with 
Voronoï diag!



15

Experiments on toy functions

𝑓: 𝑥, 𝑦 → sin 𝑥 ×sin(𝑦)
Sinus function

10000 training points
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Experiments on toy functions

𝑓: 𝑥, 𝑦 → sin 𝑥 cos 𝑦 exp 1 −
𝑥S + 𝑦S

𝜋

Holder table function

10000 training points
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Complexity of Voronoï diagrams

Problem: Voronoï diagram’s complexity is exponential…

… what about higher 𝑑 and 𝑛?

Upper bound of 𝑳)error with computation time for Sinus function (left) and Holder table function (right)

Best upper bound: 0.098
High sample estimation: 0.087

Best upper bound: 0.53
High sample estimation: 0.42
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Learning heat diffusion 

Diffusion in 𝟐D:
𝜕𝑢
𝜕𝑡	

= 𝐷
𝜕'𝑢
𝜕𝑥'

+
𝜕'𝑢
𝜕𝑦'

Ø We simulate heat diffusion on a homogeneous surface , with 4 Dirichlet boundary 
conditions and observe the field at convergence.

Ø The final heat field depends on the boundary conditions, but not on the initial state 
nor the diffusivity. 

Design of experiment: 

Ø Sample 𝑛 = 5000 boundary conditions 𝑎!, 𝑏!, 𝑐!, 𝑑! !∈{%,…,+} uniformly on 0,1 7.
Ø Conduct 𝑛	simulations on a 𝑝×𝑝 grid (𝑝 = 32), yielding a temperature field 𝑇#8 #,8∈ %,…,9 *.

Training dataset: 

Ø A subset of 𝑛×𝑝×𝑝/10 = 512,000 points 𝑎!, 𝑏!, 𝑐!, 𝑑!, 𝑥#, 𝑥8 , 𝑇#,8 !∈ %,…,+ ,#,8∈ %,…,9 * 	

Neural implicit representation approach!



19

Approximation results

Standard fully connected, MSE=4.1×1078

Lipschitz network, MSE=6.3×1078
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How to handle unknown 𝐾!?

Two ways:

1. Empirical estimation of Lipschitz constant using:

P𝐾- =	 max.∈{",…,#}
max

Z∈𝒩$ Z%

𝑓 𝑋 − 𝑓(𝑋.)
𝑋 − 𝑋.

	

Where 𝒩B 𝑋. is the set of the 𝑘-th nearest neighbors of 𝑋..

2. Hypotheses of 𝑓:
o In [8], the authors compute the Lipschitz constant of 𝑓 when it is a 

Gaussian Process interpolating the data.
o Could apply to polynomial regression
o We might find the Lipschitz constant by studying the physics [4]
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Error bound

Lipschitz network, MSE=6.3×1078

Ø Maximum empirical 𝐿"error: 𝟎. 𝟏𝟕

Voronoï diagram with a subset of 20000 points. Takes ≈ 3000 seconds 
(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 complexity…) 

Ø Error bound: 𝟖𝟒!! Not very appealing…
Ø We have to find workarounds to use all the 𝑛×𝑝×𝑝 = 5,120,000 points 
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Outline

Ø Introduction
Ø Error bound with Voronoï diagrams
Ø Overcoming Voronoï diagrams complexity

Ø Mixed random and mesh datasets
Ø Mapping to grid (for a tighter bound?)

Ø Conclusion & Takeaway
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Mixed random and mesh datasets

Suppose that you have a set of points 𝐗0 =
{𝑋%0, … , 𝑋+0} uniformly sampled on a domain 
0,1 0.

Now consider a set of points 𝑥%, … , 𝑥9
evenly spaced on 0,1 .

Then define the set of points 
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

where 𝑋!0 = 𝑋!0 %, … , 𝑋!
0
0 Here, 𝑑 = 1

𝑥2

𝑥)

𝑥9

𝑥'7)

𝑥'72

𝑥'

…
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Mixed random and mesh datasets

Suppose that you have a set of points 𝐗0 =
{𝑋%0, … , 𝑋+0} uniformly sampled on a domain 
0,1 0.

Now consider a set of points 𝑥%, … , 𝑥9
evenly spaced on 0,1 .

Example: numerical simulation

o Sample 𝑛 different boundary conditions 
uniformly 𝜕𝑏%, … , 𝜕𝑏+

o compute the 𝑛 simulations on a mesh of 
size 𝑝×𝑝

Ø 𝑛×𝑝×𝑝 learning points 𝑥!, 𝑦#, 𝜕𝑏8 !

mesh random unif

Then define the set of points 
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

where 𝑋!0 = 𝑋!0 %, … , 𝑋!
0
0
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Mixed random and mesh datasets

𝑥2

𝑥)

𝑥9

𝑥'7)

𝑥'72

𝑥'

…

𝑋%,,-&%

𝑋%,%-&% 𝑋.,%-&%

𝑋.,,-&%

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

𝑟 𝑋!"

𝑟(𝑋!,$
"%&)

Define the set of points 
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,
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Mixed random and mesh datasets

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

In that case, we only need to 
compute the Voronoï diagram 𝒱! for 
𝑋.! .∈{",…,#} to obtain 𝑟(𝑋.,\!]") and 

compute the bound!

Practical consequences:

Ø Compute a Voronoï diagram in 
dimension 𝑑 + 1with n×𝑝 points

Ø Compute a Voronoï diagram in 
dimension 𝑑 with 𝑛 points

Becomes

Define the set of points 
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,
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Mixed random and mesh datasets

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

In that case, we only need to 
compute the Voronoï diagram 𝒱! for 
𝑋.! .∈{",…,#} to obtain 𝑟(𝑋.,\!]") and 

compute the bound!

Practical consequences:

Ø Compute a Voronoï diagram in 
dimension 𝑑 + 2with n×𝑝×𝑝

Ø Compute a Voronoï diagram in 
dimension 𝑑 with 𝑛 points

Becomes

Recursivity:
For a 𝟐D Grid

Define the set of points 
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,
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Mixed random and mesh datasets

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

In that case, we only need to 
compute the Voronoï diagram 𝒱! for 
𝑋.! .∈{",…,#} to obtain 𝑟(𝑋.,\!]") and 

compute the bound!

Practical consequences:

Ø Compute a Voronoï diagram in 
dimension 𝑑 + 3with n×𝑝×𝑝×𝑝

Ø Compute a Voronoï diagram in 
dimension 𝑑 with 𝑛 points

Becomes

Recursivity:
For a 𝟑D Grid

Define the set of points 
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,



29

Results on Heat Diffusion

Classical Voronoï Mixed random/mesh

Nb points used 20×109 𝟓𝟏𝟐×𝟏𝟎𝟒

Total eval time (sec.) > 3000 𝟏. 𝟕𝟐

Max 𝐿2 error (est.) 0.1716 0.1716

Upper bound 84 𝟏. 𝟔𝟑𝟐𝟎

Results of the different methods for computing ̅𝐽&

What if we cannot leverage a mixed grid-random dataset structure?
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Mapping to grid

Let’s consider 𝐗 = 𝑋%, … , 𝑋+ uniformly 
distributed on [0,1]0. 

𝑋.

𝑋\

Now, consider a grid of 𝑝* cells with centers 
{𝑐2, … , 𝑐'!}

By lemma 1, ∀𝑥 ∈ 0,1 * ,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& + 𝐾$ 𝑥	 − 𝑁 𝑥 +
  𝑓 𝑁 𝑥 − 𝑔(𝑁 𝑥 ) 	

We can do better because we can evaluate 𝒈(𝒙)!

∀𝑥 ∈ 0,1 * ,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& 𝑥	 − 𝑁 𝑥 + 𝑔 𝑥 − 𝑔(𝑁 𝑥 ) +
  𝑓 𝑁 𝑥 − 𝑔(𝑁 𝑥 ) 	

Lemma 2
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𝑋.

𝑋\

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐% ) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐% ) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with 
centers {𝑐2, … , 𝑐'!}

Mapping to grid



32

𝑋.

𝑋\

𝐾&

𝐶%
𝑐%

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐% ) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐% ) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with 
centers {𝑐2, … , 𝑐'!}
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𝑋.

𝑋\

𝑋.

𝑋\

𝐾&

𝐶%
𝑐%

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐% ) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐% ) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with 
centers {𝑐2, … , 𝑐'!}
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𝑋.

𝑋\

𝐶%

𝐾&

Since we know that ∀𝑥 ∈ 𝐶% ,

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝑓 𝑐% − 𝑔 𝑐% +
*
)'
(𝐾& + 𝐾$)

𝑐%

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐% ) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐% ) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with 
centers {𝑐2, … , 𝑐'!}
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𝑋.

𝑋\

𝐶%

𝐾&

𝑐%

We have that ∀𝑥 ∈ 𝐶% ,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
 𝑔 𝑐% − 𝑔(𝑁 𝑐% ) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐% ) +
*
)'
(𝐾& + 𝐾$)

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐% ) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐% ) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with 
centers {𝑐2, … , 𝑐'!}
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Mapping to grid

∀𝑥 ∈ 𝐶8,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾: 𝑐8 	− 𝑁 𝑐8 + 𝑔 𝑐8 − 𝑔(𝑁 𝑐8 ) + 𝑓 𝑁 𝑐8 − 𝑔(𝑁 𝑐8 ) +
𝑑
2𝑝 (𝐾: + 𝐾1)

freeBy definition, 𝑁 𝑐% ∈ 𝐗.
Error at each dataset 

point. 
Always evaluated for 

classical validation

Requires evaluations 
of 𝑔(𝑐%), which can be 

done in batch very 
efficiently  

Requires calls to a 
nearest neighbor 
algorithm to find 

𝑁 𝑐%

Computational efforts needed:
o Nearest neighbor algorithm

Ø Many very efficient libraries (immensely cheaper than Voronoï diagram – complexity not exponential)

Ø The bound is still valid with approximate nearest neighbors 
o Evaluation of 𝑔

Ø Very efficient on GPU
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Computational efforts needed:
o Nearest neighbor algorithm

Ø Many very efficient libraries (immensely cheaper than Voronoï diagram – complexity not exponential)

Ø The bound is still valid with approximate nearest neighbors
o Evaluation of 𝑔

Ø Very efficient on GPU

∀𝑥 ∈ 𝐶8,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾: 𝑐8 	− 𝑁 𝑐8 + 𝑔 𝑐8 − 𝑔(𝑁 𝑐8 ) + 𝑓 𝑁 𝑐8 − 𝑔(𝑁 𝑐8 ) +
𝑑
𝑝 (𝐾: + 𝐾1)

Beneficial side effect:
We were able to replace 𝐾1 𝑐8 	− 𝑁 𝑐8 with 𝑔 𝑐8 − 𝑔(𝑁 𝑐8 ) , which can make the 
bound tighter since by definition, 𝑔 𝑐8 − 𝑔(𝑁 𝑐8 ) ≤ 𝐾1 𝑐8 	− 𝑁 𝑐8

Mapping to grid
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Results on Toy functions

Upper bound of 𝑳)	error with computation time for Sinus function (left) and Holder table function (right).
The grid used is of size 1000×1000.

Best upper bound (Voronoï): 0.098
Best upper bound (grid mapping): 0.107

High sample estimation: 0.087

Best upper bound (Voronoï): 0.53
Best upper bound (grid mapping): 0.53

High sample estimation: 0.42
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Results on Heat Diffusion

Classical Voronoï Mixed random/mesh Grid mapping Grid mapping

Nb points used 20×109 𝟓𝟏𝟐×𝟏𝟎𝟒 512×109 𝟓𝟏𝟐×𝟏𝟎𝟒

Total eval time (sec.) > 3000 𝟏. 𝟕𝟐 37 + 80 385 + 80

Max 𝐿2 error (est.) 0.1716 0.1716 0.1716 0.1716

Upper bound 84 1.6320 1.3014 𝟏. 𝟏𝟗𝟓𝟑

Results of the different methods for computing ̅𝐽& (+80 is the time for net predictions on the grid)  

For Approx. Voronoï, we used a grid of size 𝑝 = 14
Ø Computed nearest neighbors for 7,529,536 points
Ø Used faiss1 library on GPU 

1 https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss
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Takeaways - conclusions

We built algorithms to compute strict uniform upper bounds for 𝑓 − 𝑔 ', where 𝑔 is a 
Lipschitz neural net approximating for 𝑓. Can be very tight for low dimension.

Ø Voronoï based, very costly because of Voronoï diagram’s exponential complexity.
Ø Can be made way cheaper by leveraging the mesh structure of some data dimensions.
Ø Can be relaxed by building a grid and bounding each center’s error.

o The method is applicable to any K-lip model like Gaussian Processes [8] or Polynomial interpolation.
o The algorithms make it possible to locate the error, which could be useful for active learning (we could 

provably reduce the error bound) or sequential optimization.
o Estimation of 𝐾::

Ø build local estimators to refine the bound, possibly using interpolators [8].
Ø Could we find 𝐾: by using underlying PDEs knowledge [4]?

o Goes well with the Neural Implicit Representation approach. Could be paired with neural operator 
learning by low dimension parametrization of boundary conditions/initialization.

o Hybridization between ML and classical solvers

Perspectives:

Check out “Accelerating hypersonic reentry simulations using deep 
learning-based hybridization (with guarantees)” Novello et al., freshly 
accepted in the Journal of Computational Physics!

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uaJK95oAAAAJ&citation_for_view=uaJK95oAAAAJ:Tyk-4Ss8FVUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uaJK95oAAAAJ&citation_for_view=uaJK95oAAAAJ:Tyk-4Ss8FVUC
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Construction of 1-Lipschitz neural networks

Classical fully connected neural network:
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Construction of 1-Lipschitz neural networks

How to make it 𝟏-Lipschitz ?

Classical fully connected neural network:

with (for layer 𝑘): e𝑔 𝑥 = 𝑔; ∘ 𝑔;$% ∘ ⋯ ∘ 𝑔%(𝑥)
𝑔8(𝑥) = 𝜎8(𝑊8 ⋅ 𝑥 + 𝑏8)

• Activation function 𝜎8
• Weights matrix 𝑊8
• Bias vector 𝑏8

Ø Ensure that each 𝒈𝒌 is 𝟏-Lipschitz
ü Most activation functions are 1-Lipschitz
ü Bias is a simple shift
ü What about the weights ?

The naïve way:

During training, set 𝑾𝒌 ←
𝑾𝒌
𝑾𝒌

, where 𝑊B is the spectral norm of 𝑊B. 
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Construction of 1-Lipschitz neural networks

How to make it 𝟏-Lipschitz ?

Ø Ensure that each 𝒈𝒌 is 𝟏-Lipschitz

The naïve way:

During training, set 𝑾𝒌 ←
𝑾𝒌
𝑾𝒌

, where 𝑊B is the spectral norm of 𝑊B. 

Problem: Eigenspaces of successive 𝑊B may not be aligned: 
Ø it might happen that 𝐾& ≪ 1



45

Construction of 1-Lipschitz neural networks

The orthogonal neural networks way:

During training, enforce orthonormality of each 𝑊B [1].
Ø Implemented in deel-torchlip1 using Bjork orthonormalization 

algorithm at each training iteration 
Ø Use GroupSort [1] activation function, whose gradient is always 1
Ø In that case, 𝑲𝒈 = 𝟏!!

Problem: Enforcing orthonormality has an effect on the class of 
function 𝑔 can approximate

Ø might hinder expressivity for regression tasks…
Ø And orthonormalization is an iterative algorithm so prone to error if not converged
Ø And it takes more time to train

1 https://github.com/deel-ai/deel-torchlip

https://github.com/deel-ai/deel-torchlip
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Construction of 1-Lipschitz neural networks

The « sandwich » layers way [12]:

𝑔(𝑥) 𝑥

Direct parametrization of 𝑊8	by 
trainable 𝑋8, 𝑌8, 𝑏8, 𝑑8 such that 
the whole network 𝑔 is 𝐾1-Lipschitz. 
Ø Each layer can be > 𝐾1-Lipschitz, 

the whole network will still be 𝐾1-
Lipschitz. 

Ø Very efficient, only involve matrix 
multiplication.

Ø The constraint is enforced by 
design (no approximation).

Ø … And each layer (kind of) looks 
like a sandwich. 

𝑊%

𝑊%;2

𝜎

A “sandwich” layer [12]
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Construction of 1-Lipschitz neural networks

How to make it 𝟏-Lipschitz ?

1. The orthogonal neural networks way
2. The sandwich layers way

How to make it 𝑲-Lipschitz ?

Ø Let each 𝒈𝒌 be 𝒍 𝑲-Lipschitz.
Have to know in advance the desired value of 𝑲

Ø Let 𝒈𝒍 be 𝑲-Lipschitz (by alleviating constraints on 𝑊t) 
𝑲 can be learnt


