
© DEEL- All rights reserved to IVADO, IRT Saint Exupéry, CRIAQ and ANITI. Confidential and proprietary document

Towards instance-dependent approximation
guarantees for scientific machine learning using
Lipschitz neural networks

P. Novello, IRT Saint Exupery
C. Gauchy, CEA
M. Dalery, Laboratoire de Mathématiques de Besançon
M. Peyron, CERFACS & EVIDEN
S. Saha, Indian Statistical Institute

Challenges of SciML

2

Scientific Machine Learning is thriving [2] …
o Extends traditional surrogate modeling and function approximation to larger scale

problems (mesh data) [5,7].
o Encompasses new techniques like Physics informed learning ([5,6]., this workshop) to

refine the quality of the approximation and foster practitioner’s trust in those models

…but surrogate models and numerical schemes are not considered equals
o Such models are data driven and lack strict guarantees as seen classical numerical

schemes
o Some workaround to leverage ML without affecting the guarantees:

Ø ML-driven preconditioning [9], Mesh initialization [13],…

…Couldn’t we provide strict approximation guarantees for SciML models?
Still, the performances of next gen surrogate models are so good as is…

Finding an uniform error bound for 𝑔

3

We approximated a function 𝑓:𝒳 ∈ ℝ! → ℝ using a neural network 𝑔 and a set of
learning points 𝑋", 𝑌" = 𝑓 𝑋" , … , 𝑋#, 𝑌# = 𝑓 𝑋#

Now, can we provide approximation guarantees after the training using 𝒈 and
𝑿𝟏, 𝒀𝟏 = 𝒇 𝑿𝟏 , … , 𝑿𝒏, 𝒀𝒏 = 𝒇 𝑿𝒏 only?

By finding bounds on

𝐽& = 𝑓 − 𝑔 ' = max
(∈𝒳

𝑓 𝑥 − 𝑔+ 𝑥

In the following, we try to bound 𝑓 − 𝑔 ', the max. of the absolute error with a bound �̅�𝒈.
To that end, we will leverage the properties of Lipschitz neural networks

Lipschitz Neural Networks

4

A function 𝑓 is said Lipschitz continuous, of constant 𝐾- if :

∀𝑥, 𝑦 ∈ ℝ!, 𝑓 𝑥 − 𝑓 𝑦 ≤ 𝐾-× 𝑥	 − 𝑦

A neural network 𝑔 is said 𝐾&-Lipschitz when it satisfies the above property.

Its rate of change is
bounded by 𝐾&

𝐾&
𝑑𝑔
𝑑𝑥

𝑥

5

Lipschitz Neural Networks

o Improved (and certified)
robustness to adversarial
attacks [11]

o Better generalization for
classification tasks [3]

o Better explainability [10]
o Perform well in

Wasserstein distance
estimation [3,11]

Usual applications of Lipschitz neural networks:

Original
(class: w/o)

Minimum adversarial
perturbation

Classical neural net.
(class: w)

Minimum adversarial
perturbation

Lipschitz neural net.
(class: w)

Adversarial perturbation on CelebA dataset
(binary classification of w vs w/o glasses

6

Lipschitz Neural Networks

o Improved (and certified)
robustness to adversarial
attacks [11]

o Better generalization for
classification tasks [3]

o Better explainability [10]
o Perform well in

Wasserstein distance
estimation [3,11]

Usual applications of Lipschitz neural networks:

Generalization gap for Lipschitz NN with different
𝐾! vs a classical neural network (in red)

7

Lipschitz Neural Networks

o Improved (and certified)
robustness to adversarial
attacks [11]

o Better generalization for
classification tasks [3]

o Better explainability [10]
o Perform well in

Wasserstein distance
estimation [3,11]

Usual applications of Lipschitz neural networks:

Explanation maps for a Lipschitz network (OTNN) vs a
classical network (Unconstrained)

8

Lipschitz Neural Networks

o Improved (and certified)
robustness to adversarial
attacks [11]

o Better generalization for
classification tasks [3]

o Better explainability [10]
o Perform well in

Wasserstein distance
estimation [3,11]

Usual applications of Lipschitz neural networks:

𝑊$ 𝜇, 𝜂 = 	max
%∈'!	

*𝑓 𝑥 𝑑(𝜇 − 𝜂)(𝑥)

Can be found by approximating the set of 1-Lipschitz
functions with 1-Lipschitz neural nets and perform

the optimization

Wasserstein-1 distance:

9

Motivation: Error bound in 1D

𝐾"

𝐾! 𝑓(𝑥)

𝑥
𝑋#$% 𝑋# 𝑋#&%𝑋# + 𝑋#$%

2

𝐽& ≤ max
.∈{",…,#}

1
2 𝐾& + 𝐾- 𝑋. − 𝑋.3" + 𝑓(𝑋.) − 𝑔(𝑋.)

Take the difference between maximum variation of 𝑓 and 𝑔 on each subdivision:

𝑓(𝑋#$%)

𝑓(𝑋#)

= 0 in this
example

10

Motivation: Error bound in 2D (and beyond)

𝑋!,#𝑋!$%,#

𝑋!$%,#&% 𝑋!,#&% 𝑋!&%,#&%

𝑋!&%,#

𝑋!&%,#$%𝑋!,#$%𝑋!$%,#$%

ℎ

• Consider 𝑛' learning points
𝑋!,# !,#∈{%,…+}^' at the center of a grid

with cells of edge size ℎ.

In the 𝑘-th cell of center 𝑋!,#:

𝐽$% ≤ 𝑓 𝑋!,# − 𝑔 𝑋!,# +
1
2
𝐾& + 𝐾$ ℎ = ̅𝐽$%

1
2
ℎ

Bound in 𝟐D (𝒅 = 𝟐):

Bound in 𝑵D (𝒅 = 𝑵):
In the 𝑘-th cell of center 𝑋':

𝐽$% ≤ 𝑓 𝑋' − 𝑔 𝑋' + (
)

𝐾& + 𝐾$ ℎ = ̅𝐽$%

Then,
𝐽& ≤	maxB

̅𝐽&B

11

Breaking free from grids

Main problem: Learning points are rarely structured as a grid

What about learning in the context of Scientific ML?

We control the design of experiment so we could build it as a grid
Very constraining:

o The DOE should be defined in advance and we could not add points sequentially
o Grids suffer from the curse of dimensionality, the number of 𝑓 evaluations would

grow exponentially with 𝑑
o Monte Carlo is convenient

Aim of this work: find ways to build upper bounds for 𝐽& when
𝑋", 𝑌" = 𝑓 𝑋" , … , 𝑋#, 𝑌# = 𝑓 𝑋# is not structured as a grid

12

Outline

Ø Introduction
Ø Error bound with Voronoï diagrams
Ø Overcoming Voronoï diagrams complexity
Ø Conclusion & Takeaway

13

Definition of a Voronoï diagram (and some notations)

A Voronoï diagram 𝓥𝒅 is built on a set of points 𝐗 =
𝑋%, … , 𝑋+ , X/ ∈ 𝒳 ⊂ ℝ0.

Each point is called a site, and the diagram is defined by
its cells {𝒱0(𝑋%), … , 𝒱0(𝑋+)} themselves defined by

𝒱0(𝑋!) 	= 𝑥 ∈ 𝒳 ∀𝑗 ∈ 1,… , 𝑛 , 𝑥	 − 𝑋! ≤ 𝑥	 − 𝑋# }

If 𝑥 ∈ 𝒱0(𝑋!), then 𝑋! is the nearest neighbor of 𝑥

We have that 𝒳 =	⋃!∈{%,…,+}𝒱0(𝑋!), so to obtain ̅𝐽1,
it is enough finding ̅𝐽1! , an upper bound for

𝐽1! = max
2∈𝒱'(5()

𝑓 𝑥 − 𝑔(𝑥)

14

Error bound using Voronoï diagram

Let 𝑟 𝑋! be the radius of	𝒱*(𝑋!) defined by
𝑟 𝑋! =	 max

+∈𝒱!(/")
𝑥	 − 𝑋!

Then, it holds that
𝐽$! ≤ 𝑓 𝑋! − 𝑔 𝑋! + 𝐾& + 𝐾$ 𝑟(𝑋!)	

Hence,
𝐽$ ≤ max

!∈{2,…,4}
𝑓 𝑋! − 𝑔 𝑋! + 𝐾& + 𝐾$ 𝑟(𝑋!)

Ø All we need is to compute 𝑟(𝑋!)

Let 𝑁: 𝑥 → 𝑎𝑟𝑔min
/"∈𝐗

𝑥 − 𝑋! (nearest neighbor map)

Then by the Lipschitz property of 𝑔 and 𝑓, we have that ∀𝑥 ∈ 𝒳,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& + 𝐾$ 𝑥	 − 𝑁 𝑥 +
 𝑓 𝑁 𝑥 − 𝑔(𝑁 𝑥) 	Lemma 1

Goes well with
Voronoï diag!

15

Experiments on toy functions

𝑓: 𝑥, 𝑦 → sin 𝑥 ×sin(𝑦)
Sinus function

10000 training points

16

Experiments on toy functions

𝑓: 𝑥, 𝑦 → sin 𝑥 cos 𝑦 exp 1 −
𝑥S + 𝑦S

𝜋

Holder table function

10000 training points

17

Complexity of Voronoï diagrams

Problem: Voronoï diagram’s complexity is exponential…

… what about higher 𝑑 and 𝑛?

Upper bound of 𝑳)error with computation time for Sinus function (left) and Holder table function (right)

Best upper bound: 0.098
High sample estimation: 0.087

Best upper bound: 0.53
High sample estimation: 0.42

18

Learning heat diffusion

Diffusion in 𝟐D:
𝜕𝑢
𝜕𝑡	

= 𝐷
𝜕'𝑢
𝜕𝑥'

+
𝜕'𝑢
𝜕𝑦'

Ø We simulate heat diffusion on a homogeneous surface , with 4 Dirichlet boundary
conditions and observe the field at convergence.

Ø The final heat field depends on the boundary conditions, but not on the initial state
nor the diffusivity.

Design of experiment:

Ø Sample 𝑛 = 5000 boundary conditions 𝑎!, 𝑏!, 𝑐!, 𝑑! !∈{%,…,+} uniformly on 0,1 7.
Ø Conduct 𝑛	simulations on a 𝑝×𝑝 grid (𝑝 = 32), yielding a temperature field 𝑇#8 #,8∈ %,…,9 *.

Training dataset:

Ø A subset of 𝑛×𝑝×𝑝/10 = 512,000 points 𝑎!, 𝑏!, 𝑐!, 𝑑!, 𝑥#, 𝑥8 , 𝑇#,8 !∈ %,…,+ ,#,8∈ %,…,9 * 	

Neural implicit representation approach!

19

Approximation results

Standard fully connected, MSE=4.1×1078

Lipschitz network, MSE=6.3×1078

20

How to handle unknown 𝐾!?

Two ways:

1. Empirical estimation of Lipschitz constant using:

P𝐾- =	 max.∈{",…,#}
max

Z∈𝒩$ Z%

𝑓 𝑋 − 𝑓(𝑋.)
𝑋 − 𝑋.

	

Where 𝒩B 𝑋. is the set of the 𝑘-th nearest neighbors of 𝑋..

2. Hypotheses of 𝑓:
o In [8], the authors compute the Lipschitz constant of 𝑓 when it is a

Gaussian Process interpolating the data.
o Could apply to polynomial regression
o We might find the Lipschitz constant by studying the physics [4]

21

Error bound

Lipschitz network, MSE=6.3×1078

Ø Maximum empirical 𝐿"error: 𝟎. 𝟏𝟕

Voronoï diagram with a subset of 20000 points. Takes ≈ 3000 seconds
(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 complexity…)

Ø Error bound: 𝟖𝟒!! Not very appealing…
Ø We have to find workarounds to use all the 𝑛×𝑝×𝑝 = 5,120,000 points

22

Outline

Ø Introduction
Ø Error bound with Voronoï diagrams
Ø Overcoming Voronoï diagrams complexity

Ø Mixed random and mesh datasets
Ø Mapping to grid (for a tighter bound?)

Ø Conclusion & Takeaway

23

Mixed random and mesh datasets

Suppose that you have a set of points 𝐗0 =
{𝑋%0, … , 𝑋+0} uniformly sampled on a domain
0,1 0.

Now consider a set of points 𝑥%, … , 𝑥9
evenly spaced on 0,1 .

Then define the set of points
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

where 𝑋!0 = 𝑋!0 %, … , 𝑋!
0
0 Here, 𝑑 = 1

𝑥2

𝑥)

𝑥9

𝑥'7)

𝑥'72

𝑥'

…

24

Mixed random and mesh datasets

Suppose that you have a set of points 𝐗0 =
{𝑋%0, … , 𝑋+0} uniformly sampled on a domain
0,1 0.

Now consider a set of points 𝑥%, … , 𝑥9
evenly spaced on 0,1 .

Example: numerical simulation

o Sample 𝑛 different boundary conditions
uniformly 𝜕𝑏%, … , 𝜕𝑏+

o compute the 𝑛 simulations on a mesh of
size 𝑝×𝑝

Ø 𝑛×𝑝×𝑝 learning points 𝑥!, 𝑦#, 𝜕𝑏8 !

mesh random unif

Then define the set of points
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

where 𝑋!0 = 𝑋!0 %, … , 𝑋!
0
0

25

Mixed random and mesh datasets

𝑥2

𝑥)

𝑥9

𝑥'7)

𝑥'72

𝑥'

…

𝑋%,,-&%

𝑋%,%-&% 𝑋.,%-&%

𝑋.,,-&%

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

𝑟 𝑋!"

𝑟(𝑋!,$
"%&)

Define the set of points
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

26

Mixed random and mesh datasets

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

In that case, we only need to
compute the Voronoï diagram 𝒱! for
𝑋.! .∈{",…,#} to obtain 𝑟(𝑋.,\!]") and

compute the bound!

Practical consequences:

Ø Compute a Voronoï diagram in
dimension 𝑑 + 1with n×𝑝 points

Ø Compute a Voronoï diagram in
dimension 𝑑 with 𝑛 points

Becomes

Define the set of points
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

27

Mixed random and mesh datasets

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

In that case, we only need to
compute the Voronoï diagram 𝒱! for
𝑋.! .∈{",…,#} to obtain 𝑟(𝑋.,\!]") and

compute the bound!

Practical consequences:

Ø Compute a Voronoï diagram in
dimension 𝑑 + 2with n×𝑝×𝑝

Ø Compute a Voronoï diagram in
dimension 𝑑 with 𝑛 points

Becomes

Recursivity:
For a 𝟐D Grid

Define the set of points
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

28

Mixed random and mesh datasets

Now, consider 𝒱0	the Voronoï
diagram of 𝑋%0, … , 𝑋+0 and 𝑟 𝑋!0

the radius of 𝒱0(X/0).

Then:∀𝑖 ∈ 1,… , 𝑛 , ∀𝑗, 𝑘 ∈ 1,… , 𝑝 ',

𝑟(𝑋!,#0&%) = 𝑟(𝑋!,80&%) =
1
4𝑝' + 𝑟 𝑋!

0 '

In that case, we only need to
compute the Voronoï diagram 𝒱! for
𝑋.! .∈{",…,#} to obtain 𝑟(𝑋.,\!]") and

compute the bound!

Practical consequences:

Ø Compute a Voronoï diagram in
dimension 𝑑 + 3with n×𝑝×𝑝×𝑝

Ø Compute a Voronoï diagram in
dimension 𝑑 with 𝑛 points

Becomes

Recursivity:
For a 𝟑D Grid

Define the set of points
𝐗0&% = 𝑋!,#0&% !∈ %,…,+ ,#∈{%,…,9}

such that

𝑋!,#0&% = 𝑋!0 %, … , 𝑋!
0
0, 𝑥# ,

29

Results on Heat Diffusion

Classical Voronoï Mixed random/mesh

Nb points used 20×109 𝟓𝟏𝟐×𝟏𝟎𝟒

Total eval time (sec.) > 3000 𝟏. 𝟕𝟐

Max 𝐿2 error (est.) 0.1716 0.1716

Upper bound 84 𝟏. 𝟔𝟑𝟐𝟎

Results of the different methods for computing ̅𝐽&

What if we cannot leverage a mixed grid-random dataset structure?

30

Mapping to grid

Let’s consider 𝐗 = 𝑋%, … , 𝑋+ uniformly
distributed on [0,1]0.

𝑋.

𝑋\

Now, consider a grid of 𝑝* cells with centers
{𝑐2, … , 𝑐'!}

By lemma 1, ∀𝑥 ∈ 0,1 * ,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& + 𝐾$ 𝑥	 − 𝑁 𝑥 +
 𝑓 𝑁 𝑥 − 𝑔(𝑁 𝑥) 	

We can do better because we can evaluate 𝒈(𝒙)!

∀𝑥 ∈ 0,1 * ,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& 𝑥	 − 𝑁 𝑥 + 𝑔 𝑥 − 𝑔(𝑁 𝑥) +
 𝑓 𝑁 𝑥 − 𝑔(𝑁 𝑥) 	

Lemma 2

31

𝑋.

𝑋\

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐%) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐%) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with
centers {𝑐2, … , 𝑐'!}

Mapping to grid

32

𝑋.

𝑋\

𝐾&

𝐶%
𝑐%

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐%) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐%) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with
centers {𝑐2, … , 𝑐'!}

33

𝑋.

𝑋\

𝑋.

𝑋\

𝐾&

𝐶%
𝑐%

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐%) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐%) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with
centers {𝑐2, … , 𝑐'!}

34

𝑋.

𝑋\

𝐶%

𝐾&

Since we know that ∀𝑥 ∈ 𝐶% ,

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝑓 𝑐% − 𝑔 𝑐% +
*
)'
(𝐾& + 𝐾$)

𝑐%

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐%) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐%) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with
centers {𝑐2, … , 𝑐'!}

35

𝑋.

𝑋\

𝐶%

𝐾&

𝑐%

We have that ∀𝑥 ∈ 𝐶% ,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
 𝑔 𝑐% − 𝑔(𝑁 𝑐%) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐%) +
*
)'
(𝐾& + 𝐾$)

Mapping to grid

∀𝑘 ∈ 1,… , 𝑝) ,

𝑓 𝑐% − 𝑔(𝑐%) ≤ 𝐾& 𝑐% 	− 𝑁 𝑐% +
𝑔 𝑐% − 𝑔(𝑁 𝑐%) +

 𝑓 𝑁 𝑐% − 𝑔(𝑁 𝑐%) 	

Now, consider a grid of 𝑝* cells 𝐶2, … , 𝐶'!	 with
centers {𝑐2, … , 𝑐'!}

36

Mapping to grid

∀𝑥 ∈ 𝐶8,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾: 𝑐8 	− 𝑁 𝑐8 + 𝑔 𝑐8 − 𝑔(𝑁 𝑐8) + 𝑓 𝑁 𝑐8 − 𝑔(𝑁 𝑐8) +
𝑑
2𝑝 (𝐾: + 𝐾1)

freeBy definition, 𝑁 𝑐% ∈ 𝐗.
Error at each dataset

point.
Always evaluated for

classical validation

Requires evaluations
of 𝑔(𝑐%), which can be

done in batch very
efficiently

Requires calls to a
nearest neighbor
algorithm to find

𝑁 𝑐%

Computational efforts needed:
o Nearest neighbor algorithm

Ø Many very efficient libraries (immensely cheaper than Voronoï diagram – complexity not exponential)

Ø The bound is still valid with approximate nearest neighbors
o Evaluation of 𝑔

Ø Very efficient on GPU

37

Computational efforts needed:
o Nearest neighbor algorithm

Ø Many very efficient libraries (immensely cheaper than Voronoï diagram – complexity not exponential)

Ø The bound is still valid with approximate nearest neighbors
o Evaluation of 𝑔

Ø Very efficient on GPU

∀𝑥 ∈ 𝐶8,	

𝑓 𝑥 − 𝑔 𝑥 ≤ 𝐾: 𝑐8 	− 𝑁 𝑐8 + 𝑔 𝑐8 − 𝑔(𝑁 𝑐8) + 𝑓 𝑁 𝑐8 − 𝑔(𝑁 𝑐8) +
𝑑
𝑝 (𝐾: + 𝐾1)

Beneficial side effect:
We were able to replace 𝐾1 𝑐8 	− 𝑁 𝑐8 with 𝑔 𝑐8 − 𝑔(𝑁 𝑐8) , which can make the
bound tighter since by definition, 𝑔 𝑐8 − 𝑔(𝑁 𝑐8) ≤ 𝐾1 𝑐8 	− 𝑁 𝑐8

Mapping to grid

38

Results on Toy functions

Upper bound of 𝑳)	error with computation time for Sinus function (left) and Holder table function (right).
The grid used is of size 1000×1000.

Best upper bound (Voronoï): 0.098
Best upper bound (grid mapping): 0.107

High sample estimation: 0.087

Best upper bound (Voronoï): 0.53
Best upper bound (grid mapping): 0.53

High sample estimation: 0.42

39

Results on Heat Diffusion

Classical Voronoï Mixed random/mesh Grid mapping Grid mapping

Nb points used 20×109 𝟓𝟏𝟐×𝟏𝟎𝟒 512×109 𝟓𝟏𝟐×𝟏𝟎𝟒

Total eval time (sec.) > 3000 𝟏. 𝟕𝟐 37 + 80 385 + 80

Max 𝐿2 error (est.) 0.1716 0.1716 0.1716 0.1716

Upper bound 84 1.6320 1.3014 𝟏. 𝟏𝟗𝟓𝟑

Results of the different methods for computing ̅𝐽& (+80 is the time for net predictions on the grid)

For Approx. Voronoï, we used a grid of size 𝑝 = 14
Ø Computed nearest neighbors for 7,529,536 points
Ø Used faiss1 library on GPU

1 https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss

40

Takeaways - conclusions

We built algorithms to compute strict uniform upper bounds for 𝑓 − 𝑔 ', where 𝑔 is a
Lipschitz neural net approximating for 𝑓. Can be very tight for low dimension.

Ø Voronoï based, very costly because of Voronoï diagram’s exponential complexity.
Ø Can be made way cheaper by leveraging the mesh structure of some data dimensions.
Ø Can be relaxed by building a grid and bounding each center’s error.

o The method is applicable to any K-lip model like Gaussian Processes [8] or Polynomial interpolation.
o The algorithms make it possible to locate the error, which could be useful for active learning (we could

provably reduce the error bound) or sequential optimization.
o Estimation of 𝐾::

Ø build local estimators to refine the bound, possibly using interpolators [8].
Ø Could we find 𝐾: by using underlying PDEs knowledge [4]?

o Goes well with the Neural Implicit Representation approach. Could be paired with neural operator
learning by low dimension parametrization of boundary conditions/initialization.

o Hybridization between ML and classical solvers

Perspectives:

Check out “Accelerating hypersonic reentry simulations using deep
learning-based hybridization (with guarantees)” Novello et al., freshly
accepted in the Journal of Computational Physics!

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uaJK95oAAAAJ&citation_for_view=uaJK95oAAAAJ:Tyk-4Ss8FVUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=uaJK95oAAAAJ&citation_for_view=uaJK95oAAAAJ:Tyk-4Ss8FVUC

41

References
1. Anil, Cem, James Lucas, and Roger Grosse. “Sorting out Lipschitz Function Approximation.”ICML, June 11, 2019.

https://doi.org/10.48550/arXiv.1811.05381.
2. Baker, Nathan, Frank Alexander, Timo Bremer, Aric Hagberg, Yannis Kevrekidis, Habib Najm, Manish Parashar, et al. “Workshop Report on Basic

Research Needs for Scientific Machine Learning: Core Technologies for Artificial Intelligence,” February 2019. https://doi.org/10.2172/1478744.
3. Béthune, Louis, Thibaut Boissin, Mathieu Serrurier, Franck Mamalet, Corentin Friedrich, and Alberto González-Sanz. “Pay Attention to Your Loss:

Understanding Misconceptions about 1-Lipschitz Neural Networks.”NeurIPS, October 17, 2022. https://doi.org/10.48550/arXiv.2104.05097.
4. Bunin, Gene A., and Grégory François. “Lipschitz Constants in Experimental Optimization.” arXiv, January 14, 2017.

https://doi.org/10.48550/arXiv.1603.07847.
5. Goswami, Somdatta, Aniruddha Bora, Yue Yu, and George Em Karniadakis. “Physics-Informed Deep Neural Operator Networks.” arXiv, July 17, 2022.

http://arxiv.org/abs/2207.05748.
6. Karniadakis, George, Yannis Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. “Physics-Informed Machine Learning,” May 24, 2021, 1–19.

https://doi.org/10.1038/s42254-021-00314-5.
7. Kovachki, Nikola, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. “Neural

Operator: Learning Maps Between Function Spaces.” arXiv, April 7, 2023. http://arxiv.org/abs/2108.08481.
8. Lederer, Armin, Jonas Umlauft, and Sandra Hirche. “Uniform Error Bounds for Gaussian Process Regression with Application to Safe

Control.”NeurIPS, December 19, 2019. http://arxiv.org/abs/1906.01376.
9. Li, Yichen, Peter Yichen Chen, Tao Du, and Wojciech Matusik. “Learning Preconditioners for Conjugate Gradient PDE Solvers.” In Proceedings of the

40th International Conference on Machine Learning, 19425–39. PMLR, 2023. https://proceedings.mlr.press/v202/li23e.html.
10. Serrurier, Mathieu, Franck Mamalet, Thomas Fel, Louis Béthune, and Thibaut Boissin. “On the Explainable Properties of 1-Lipschitz Neural Networks:

An Optimal Transport Perspective.”NeurIPS, June 22, 2023. https://doi.org/10.48550/arXiv.2206.06854.
11. Serrurier, Mathieu, Franck Mamalet, Alberto Gonzalez-Sanz, Thibaut Boissin, Jean-Michel Loubes, and Eustasio del Barrio. “Achieving Robustness in

Classification Using Optimal Transport with Hinge Regularization.” In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
505–14. Nashville, TN, USA: IEEE, 2021. https://doi.org/10.1109/CVPR46437.2021.00057.

12. Wang, Ruigang, and Ian Manchester. “Direct Parameterization of Lipschitz-Bounded Deep Networks.” In Proceedings of the 40th International
Conference on Machine Learning, 36093–110. PMLR, 2023. https://proceedings.mlr.press/v202/wang23v.html.

13. Novello, Paul, Gaël Poëtte, David Lugato, Simon Peluchon, and Pietro Marco Congedo. “Accelerating Hypersonic Reentry Simulations Using Deep
Learning-Based Hybridization (with Guarantees).” Journal of Computational Physics, September 30, 2022. https://doi.org/10.48550/arXiv.2209.13434.

https://doi.org/10.48550/arXiv.1811.05381
https://doi.org/10.2172/1478744
https://doi.org/10.48550/arXiv.2104.05097
https://doi.org/10.48550/arXiv.1603.07847
http://arxiv.org/abs/2207.05748
https://doi.org/10.1038/s42254-021-00314-5
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/1906.01376
https://proceedings.mlr.press/v202/li23e.html
https://doi.org/10.48550/arXiv.2206.06854
https://doi.org/10.1109/CVPR46437.2021.00057
https://proceedings.mlr.press/v202/wang23v.html
https://doi.org/10.48550/arXiv.2209.13434

42

Construction of 1-Lipschitz neural networks

Classical fully connected neural network:

43

Construction of 1-Lipschitz neural networks

How to make it 𝟏-Lipschitz ?

Classical fully connected neural network:

with (for layer 𝑘): e𝑔 𝑥 = 𝑔; ∘ 𝑔;$% ∘ ⋯ ∘ 𝑔%(𝑥)
𝑔8(𝑥) = 𝜎8(𝑊8 ⋅ 𝑥 + 𝑏8)

• Activation function 𝜎8
• Weights matrix 𝑊8
• Bias vector 𝑏8

Ø Ensure that each 𝒈𝒌 is 𝟏-Lipschitz
ü Most activation functions are 1-Lipschitz
ü Bias is a simple shift
ü What about the weights ?

The naïve way:

During training, set 𝑾𝒌 ←
𝑾𝒌
𝑾𝒌

, where 𝑊B is the spectral norm of 𝑊B.

44

Construction of 1-Lipschitz neural networks

How to make it 𝟏-Lipschitz ?

Ø Ensure that each 𝒈𝒌 is 𝟏-Lipschitz

The naïve way:

During training, set 𝑾𝒌 ←
𝑾𝒌
𝑾𝒌

, where 𝑊B is the spectral norm of 𝑊B.

Problem: Eigenspaces of successive 𝑊B may not be aligned:
Ø it might happen that 𝐾& ≪ 1

45

Construction of 1-Lipschitz neural networks

The orthogonal neural networks way:

During training, enforce orthonormality of each 𝑊B [1].
Ø Implemented in deel-torchlip1 using Bjork orthonormalization

algorithm at each training iteration
Ø Use GroupSort [1] activation function, whose gradient is always 1
Ø In that case, 𝑲𝒈 = 𝟏!!

Problem: Enforcing orthonormality has an effect on the class of
function 𝑔 can approximate

Ø might hinder expressivity for regression tasks…
Ø And orthonormalization is an iterative algorithm so prone to error if not converged
Ø And it takes more time to train

1 https://github.com/deel-ai/deel-torchlip

https://github.com/deel-ai/deel-torchlip

46

Construction of 1-Lipschitz neural networks

The « sandwich » layers way [12]:

𝑔(𝑥) 𝑥

Direct parametrization of 𝑊8	by
trainable 𝑋8, 𝑌8, 𝑏8, 𝑑8 such that
the whole network 𝑔 is 𝐾1-Lipschitz.
Ø Each layer can be > 𝐾1-Lipschitz,

the whole network will still be 𝐾1-
Lipschitz.

Ø Very efficient, only involve matrix
multiplication.

Ø The constraint is enforced by
design (no approximation).

Ø … And each layer (kind of) looks
like a sandwich.

𝑊%

𝑊%;2

𝜎

A “sandwich” layer [12]

47

Construction of 1-Lipschitz neural networks

How to make it 𝟏-Lipschitz ?

1. The orthogonal neural networks way
2. The sandwich layers way

How to make it 𝑲-Lipschitz ?

Ø Let each 𝒈𝒌 be 𝒍 𝑲-Lipschitz.
Have to know in advance the desired value of 𝑲

Ø Let 𝒈𝒍 be 𝑲-Lipschitz (by alleviating constraints on 𝑊t)
𝑲 can be learnt

