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Context and Motivations

• Black holes physics ↔ investigations of the symmetries in General Relativity (and beyond)
• Thermodynamical properties of black holes : quasi-local charges / flux balance laws

Different manifestations of symmetries in GR
• Space-time symmetries under diffeomorphisms :
covariant phase space → well-defined formalism to associate flux -balance law for a
diffeomorphism
[Brown, Henneaux ’86] ... [Wald, Zoupas ’99]...[Barnich, Brandt ’02]
[Freidel, Geiller, Pranzetti ’21] ... and many other

• Killing-Yano asymptotic charges [Kastor, Traschen ’14]
• Non spacetime symmetries for 2d GR: integrable system
→ axi-symmetric phase space of GR, colliding waves : Ehlers/Matzner and Geroch groups
[Geroch ’72] ... [Nicolai, Samtleben ’96] ... [Penna ’22]

• Non spacetime symmetries for 1d GR : treated as a mechanical system
Relevant for cosmology and black hole mechanics
[BA, Livine ’19 ’20] [Geiller, Livine, Sartini ’20] [BA, Livine, Oriti ’23]
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Context and Motivations
• Observations of astrophysical black holes have entered in a new era
LIGO-Virgo ’15 / Event Horizon Telescope ’21/ NanoGRAV ’22 / GRAVITY

• Trigger many efforts to further develop black hole perturbation theory [Regge, Wheeler ’57]
Non-linearities, spectral instability, environmental effects

• Can we identify manifestation of fundamental symmetries in compact objects perturbations ?
• Examples of universal behavior for compact objects:
→ universal behavior of transmission/reflexion coefficients for wave scattering
→ conformal symmetry of the wave operator for test fields near black holes
[Maldacena, Strominger ’97] [Castro, Maloney, Strominger ’10] [Bertini ’11]
→ equation-of-state independent relation for neutrons stars: I-Love-Q relations
[Yagi, Nunes ’17]
→ vanishing of tidal deformability of 4d GR black holes in vacuum
[Damour, Nagar ’09]

Main goal
• Review the notion of vanishing of Love numbers in 4d GR black holes
• Revisit and improve one proposal to explain it via symmetries using 1d mechanics
• Connect this to the non-spacetime symmetries appearing in 1d symmetry reduced GR
• Explain the techniques to identify these symmetries: embedding / Einsenhart-Duval lift
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Outlines

• Vanishing of Love numbers and tidal deformation

• Symmetry protection for static perturbations

• Revealing non-standard symmetries of black hole mechanics
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Mystery of the vanishing of black hole’s Love numbers
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Mystery of the vanishing of black holes Love numbers
Newtonian Love numbers
• Binary system (M,M ′) separated by a distance b
• M ′ generates a tidal environment : purely static quadrupole tide

Utidal ' r2EP2(cos θ)

• In the region of size R� b around M, the newtonian potential U reads

U =
GM

r
−

1

2

[
r2 + 2k2

R5

r3

]
EP2(cos θ)

where k2 is the Love number : coefficient of the decaying branch

Relativistic Love numbers
• Relativistic theory of tidal Love numbers [Damour, Nagar ’09] [Binnington, Poisson ’09]

gtt = −f − f 2

[
r2 + 2C(r)kel2

R5

r3

]
EP2(cos θ)

• Main point: electric Love number kel2 (gauge-invariant) counterpart to newtonian one k2

Also new magnetic Love number kmag
2 . Even more complicated when rotating

• Main difficulty: k2 is defined at finite distance of the object
No good definition of multipole moments at finite distance in GR : generate ambiguities

• Current progress [Poisson ’20 ’21 ]
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Mystery of the vanishing of black holes Love numbers
Black holes’s Love numbers
• Love numbers can be computed for a large class of self-gravitating objects
• For 4d vacuum solutions of GR, the Love numbers vanish at all order in the multipolar
expansion

gtt = −f − f 2

[
r2 + 2C(r)kel2

R5

r3

]
EP2(cos θ) (1)

with

C(r) = −
15

16

r5

M5
log f −

5

8

r(r −M)(3r2 − 6Mr − 2M2)

M4f
(2)

divergent as f → 0, so kel2 = 0 [Damour, Nagar ’09] [Binnington, Poisson ’09] [Poisson ’21]
• This is no longer true in higher dimensions d > 4 or in modified gravity

Same results with other approaches
• EFT techniques: employ the worldline approach where Love numbers are coupling constant.
Vanishing of LN appears as a fine tuning ! [Kol, Smolkin ’12] [Porto ’16] [Kälin, Porto ’20]

• Test field approximation: compute the profil of spin-0, spin-1 and spin-2 test field on
Schwarzschild or Kerr / No decaying profil is consistent
[Hui, Joyce, Penco, Santoni, Salomon ’21]

• This suggests that there might be a symmetry at play which protect BH deformability
Which type of symmetry ?
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Mystery of the vanishing of black holes Love numbers

Love symmetry from near-horizon conformal symmetry
• Near-horizon SL(2,R) symmetry of test fields:
→ use the static limit of the near horizon symmetry of the wave operator
→ scalar modes organize into the discrete representation of sl(2,R)

→ valid only near the horizon
→ spacetime symmetry interpretation
[Charalambous, Dubovsky, Ivanov (PRL) ’21, ’22]

• Near-horizon carrollian structure has been argued to also play a role [Penna ’18]

Love symmetry from ladder structure
• New type of symmetry introduced by Hui, Joyce, Penco, Santoni and Salomon (HJPSS)
[HJPSS ’21]

• Inspired from previous work on ladders symmetries of de Sitter [Compton, Morrisson ’03]
→ valid on in the full spacetime bulk
→ not spacetime symmetries: no well defined geometrical origin

• Goal: try to understand the geometrical origin of the HJPSS symmetry !
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Symmetry of static black hole perturbations
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Symmetry of static black hole perturbations
• Consider a static test scalar field

ϕ(r, θ, φ) =
∑
`,m

ϕ`,m(r)Y `m(θ, ϕ) (3)

• Equation of motion on the Schwarzschild background: z = r(r − rs)

H`ϕ` = zϕ′′` + z ′ϕ′` − `(`+ 1)ϕ` = 0 ϕ`(r) = A`G`(r) + B`D`(r) (4)

• G` represents the tidal scalar field, D` the static response and B` the Love number
• Ladders operators allow to climb up and down the multipole tower

L+
` = z∂r +

`− 1

2
z ′ L−` = z∂r −

`+ 2

2
z ′ , ϕ` = L+

`−1....L
+
0 ϕ0 (5)

HJPSS Love symmetry
• HJPSS conserved charge for the `-mode: Q`

Q0 =
(
−z∂r + z ′

)
ϕ0 , Q`ϕ` = L+

`−1...L
+
1 Q0L

−
0 ....L

−
`−1ϕ` [Q`, H`] = 0 (6)

• HJPSS argument
δ`G` = Q`G` = 0 , δ`D` = Q`D` 6= 0 (7)

• Conservation of the charge implies that B` = 0: trade regularity for symmetry criteria

• What is the geometrical origin of this symmetry ?
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Symmetry of static black hole perturbations

• System is described by a Sturm-Liouville equation
• Look for the conformal symmetry of such 1d system to explain the HJPSS construction
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Symmetry of static black hole perturbations

Conformal symmetry for 1D system:
• Sturm-Liouville equation

ψ′′ + V ψ = 0 , ⇒ ψ = c1ψ1 + c2ψ2

• Wronskian is constant:

w = w [ψ1, ψ2] = ψ1ψ
′
2 − ψ2ψ

′
1 w ′ ' 0

• Two natural conserved charges:

w1 = w [ψ1, ψ] = ψ1ψ
′ − ψψ′1 , w2 = w [ψ2, ψ] = ψ2ψ

′ − ψψ′2 (8)

• Any power of these conserved charges is a conserved charge.

∣∣∣∣ Y+ = w1 ,

Y− = w2 ,

∣∣∣∣∣∣
Q+ = w2

1 /2 ,

Q− = w2
2 /2 ,

Q0 = w1w2/2 .

(9)

• Action of the charge on the solutions space: dilate and squeeze the two branches

δQ+ψ ' −c2wψ1 , δQ−ψ ' +c1wψ2 , δQ0
ψ '

1

2
w(c2ψ2 − c1ψ1) . (10)

11 / 38



Symmetry of static black hole perturbations
Hamiltonian formulation of the Wronskian charges
• Phase space:

p =
δL

δψ′
= ψ′ , H = pψ′ − L =

1

2

(
p2 + V (x)ψ2

)
, (11)

• Conformal Noether charges

Q[ξ, ψ] =
1

4
ξ′′ψ2 −

1

2
ξ′ψp + ξH ξ(x) = α+ψ

2
1 + α−ψ

2
2 + α0ψ1ψ2

where (ψ1, ψ2) are the two linearly independent solutions of the dynamics
• Translation Noether charges

Y [χ,ψ] = χp − χ′ψ χ = η+ψ1 + η−ψ2 (12)

• Charge algebra for an arbritrary 1d particle in a x-potential

{Q+, Q−} = 2wQ0 , {Q0, Q+} = −wQ+ , {Q0, Q−} = wQ− , (13)

{Q0, Y±} = ∓
w

2
Y± , {Q+, Y−} = wY+ , {Q−, Y+} = −wY− , (14)

{Y+, Y−} = w . (15)

• 1d Schrödinger algebra: sh(1) = sl(2,R)n (R× R)
• The conformal sector transforms solution onto solution with different energy

{Q,H} =
dQ
dx
−
∂Q

∂x
6= 0 (16)

• What is the action of the level of the action ?
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Symmetry of static black hole perturbations
Conformal transformation at the level of the action
• Consider 1d field Ψ in a time-dependent potential

S[ψ] =

∫
dx L[x, ψ] , with L[x, ψ] =

1

2

[
(ψ′)2 − V (x)ψ2

]
,

• Consider the finite symmetry transformations

x 7→ x̃ = f (x) ,

ψ(x) 7→ ψ̃(x̃) = f ′(x)1/2ψ(x) ,
(17)

• Non-standard because Ψ`(r) does not transform as a scalar quantity
• Action transform as

∆S =
1

2

∫
dx
{

1

2

d
dx

(
f ′′

f ′
ψ2

)
−
[

1

2
Sch[f ] + (f ′)2(V ◦ f )− V

]
ψ2

}
Sch[f ] =

f ′′′

f ′
−

3

2

(
f ′′

f ′

)2

,

• Noether symmetry if

Sch[f ] = 2V − 2(f ′)2(V ◦ f ) (18)

• General feature for such 1d system: conformal symmetry for any form of x-potential
generated by (Q±, Q0)

• Additonnal symmetry under a translation in solution space: generated by Y±

x → x̃ = x , (19)

ψ → ψ̃(x̃) = ψ(x) + χ(x) , (20)

• Schrödinger symmetry of mechanical system generated by (Q±, Q0, Y±)
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Symmetry of static black hole perturbations
What does it mean for the HJPSS argument ?
• HJPSS argument is not complete:

δ+G` = Q+G` = 0 δ+d` = Q+D` 6= 0

δ−G` = Q−G` 6= 0 δ−d` = Q−D` = 0

miss part of the symmetry
• Need an additional criteria to select the growing branch

Criteria
• The action has to remain finite under the transformation: compute the boundary term

δS =
1

2

∫ r

rs

dx
dB
dx

< +∞ (21)

B(r) '
[
α+

(
G′`
)2

+ α−
(
D′`
)2

+ α0G
′
`D
′
`

]
(c1G` + c2D`)

2 . (22)

with D` diverging as a log at the rs .
• Criteria selects the HJPSS symmetry: only (Q+, Y+) generate finite symmetry transformation

α− = α0 = 0 , and c2 = 0 . (23)

• Provide a symmetry protection for the vanishing of Love numbers for 4d GR black holes
[BA, Livine, Mukohyama, Uzan ’21]
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Symmetry of static black hole perturbations

Resulting Love symmetry
• Love symmetry: abelian sub-algebra of Schrödinger

{Q+, Y+} = 0 (24)

• Transformation of the `-mode Ψ` complicated
• Transformation of the zero mode Ψ0 for Schwarzschild black hole (change of mass)

r → r̃ =
λrs r

(λ− 1)r + rs
(25)

ψ0 → Ψ̃0(r̃) =

√
λrs

(λ− 1)r + rs
ψ(r) + η+

√
r(r − rs) (26)

• Can reproduce this construction for static test field with spin-s
• Can reproduce this for tests fields on Kerr
• Generalize to physical static perturbations
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Symmetry of static black hole perturbations
Results
• Provide a geometrical origin for the HJPSS symmetry
• Provide a suitable criteria to select the HJPSS symmetry as being the Love symmetry
• It can be identified with non-standard conformal symmetry common to any 1D mechanical
systems (free particle, harmonic oscillator ...)

Open questions
• Can we restore the symmetry on the boundary ? By adding new boundary d.o.f ?
• Symmetry for each `-multipole: can we resum it ?
• Full symmetry is infinite dimensional

w1 := w [ψ1, ψ] = ψ1ψ
′ − ψψ′1 , w2 := w [ψ2, ψ] = ψ2ψ

′ − ψψ′2 {w1, w2} = w .

(27)

with
{wn1

1 w
n2
2 , w

m1
1 w

m2
2 } = w(n1m2 −m1n2)w

n1+m1−1
1 w

n2+m2−1
2 , (28)

What is the interpretation of this symmetry ? Charges ?
• How can we generalize to dynamical perturbations ? To quasi-normal modes ?
[work in progress]

• Which lessons for black hole mechanics ?
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Symmetry of static black hole perturbations

• The ` = 0 mode of the static perturbations corresponds to a perturbative change of the mass
• The ` = 1 mode of the static perturbations corresponds to a perturbative change of the
angular momentum

• We have changed the mass of the Schwarzschild black hole by a non-standard symmetry:
→ not a spacetime-symmetry

• Look for a conformal symmetry of black hole mechanics which changes the Schwarzschild
mass at the non-perturbative level
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Möbius covariance of black hole mechanics
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A new symmetry for black hole mechanics
Black hole mechanics

• Consider the Schwarzschild-de Sitter geometry

ds2 = −
(

1−
`M

r
+
r2

`Λ

)
dt2 +

(
1−

`M

r
+
r2

`Λ

)−1

dr2 + r2dΩ2 (29)

• Penrose diagram

• Mechanical system which encodes the geometries of both the T and R regions at once
• Symmetry reduction: each slide is homogeneous
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A new symmetry for black hole mechanics
Black hole mechanics
• Action

S[g] =
1

`2
P

∫
M

d4x
[
R− 2Λ

]
, (30)

• Metric decomposition:

ds2 = ε
(
−N2(r)dr2 + γtt(r)dt2

)
+ γθθ(r)dΩ2 , (31)

• Homogeneous slice Σε: timelike if ε = −1 (T-region) / spacelike if ε = +1 (R-region)

ds2 = εγtt(r)dt2 + γθθ(r)dΩ2 (32)

• Introduce the fields and proceed to gauge fixing:

γtt :=
2β(r)

α(r)
, γθθ := `2

sα(r) , dτ =

√
2β

α
N(r)dr (33)

• Reduced action for black hole mechanics:

1

`2
P

∫
M

d4x
[
R− 2Λ

]
= Sε[α, β] = εc`P

∫
dτ

[
βα̇2 − 2αα̇β̇

2α2
+
ε

`2
s

−
εα

`2
Λ

]
, (34)

• Role of the overall constant: IR/UV cut-off (information on the boundary)

c =
1

`3
p

∫ tf

ti

dt
∮
`2
sdΩ =

`0`
2
s

`3
p

, (35)
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A new symmetry for black hole mechanics
Reformulating black hole mechanics.....
• Phase space and hamiltonian

pα =
εc`P

α2
(βα̇− αβ̇) , pβ = −εc`P

α̇

α
(36)

and

H(Λ) = H(0) +
c`P

`2
Λ

α−
c`P

`2
s

H(0) = −
1

εc`P

[
αpαpβ +

1

2
βp2

β

]
(37)

.... as a particle in a potential
• New canonical pair

X± =
1
√

2

(
β
√
α
± 2
√
α

)
, {X±, P±} = 1 . (38)

• Black hole dynamics: 2d particle with non-standard kinetic term

H(Λ) +
c`P

`2
s

= H(0) +
c`P

`2
Λ

α =
ε

2c`P
(P 2

+ − P 2
−) +

c`P

8`2
Λ

(X+ + X−)2 (39)

• Schwarzschild mechanics, i.e `Λ → +∞, is 2d free particle (up to the minus sign)
• Schwarzschild-(A)dS mechanics is a 2d harmonic oscillator (up to the minus sign)

Can known symmetries for the 2d particle be realized in black hole mechanics ?
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A new symmetry for black hole mechanics

Well known symmetries of the free particle
• Action for a 2d free particle

S[t, Xa] =
m

2

∫
dt ẊaẊa a ∈ {1, 2} (40)

with
Pa = mẊa, H =

1

2m
δabP

aP b , {Xa, Pb} = δab (41)

• Conserved charges: charges for galilean relativity + conformal extension∣∣∣∣∣∣∣∣∣∣

J = X1P2 − X2P1

B1 = 1
m

[
mX1 − tP1

]
B2 = 1

m

[
mX2 − tP2

]
P1

P2

∣∣∣∣∣∣
Q+ = mH ,

2Q0 = X1P
1 + X2P

2 − 2Ht ,

2mQ− = m(X2
1 + X2

2 )− 2t(X1P
1 + X2P

2) + 2t2H .

• Form the 2d Schrödinger algebra:

sh(2) = (sl(2,R)× so(2))n (R2 × R2) (42)

• Conformal extension of the galileean symmetry of mechanics for massive system
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A new symmetry for black hole mechanics
What role does this symmetry play ?
• Classically, conformal extension of the galileean symmetry : charge changes the energy
• Quantum mechanically, it is a symmetry of the free Schrödinger equation

i∂tΨ = −
~

2m
∇2Ψ (43)

• Schrödinger symmetry is preserved in specific non-linear extension and potential

i∂tΨ = −
~

2m
∇2Ψ + g|Ψ|nΨ∗ + V ( ~X, t)Ψ (44)

where g encodes the atom-atom interaction strength
• Schrödinger symmetry selects quantum corrections in the many-body context

Characterizing quantumness
• QM is a field theory: constrain the dynamics of the higher moments of the wave function
• 2d Schrödinger casimirs encode the deviations from classical mechanics.
Classically

C2 = P+B− − P−B+ − nJ = 0 (45)

C3 = n

(
Q2

0 −Q+Q− −
1

4
J2

)
− B+B−Q+ − P+P−Q−

− (B−P+ + B+P−)Q0 +
1

2
(B−P+ − B+P−)J = 0 .

• Quantum mechanically, C2 6= 0 encodes the squared incertitude
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A new symmetry for black hole mechanics
Schrödinger-like symmetry for Schwarzschild black hole mechanics
• Action

Sε[α, β] = εc`P

∫
dτ
[
βα̇2 − 2αα̇β̇

2α2
+
ε

`2
s

]
, (46)

and phase space: {α, pα} = {β, pβ} = 1

H̃ = H +
c`P

`2
s

= −
1

εc`P

[
αpαpβ +

1

2
βp2

β

]
(47)

• Schrödinger charges are given by J = 2αpα and

P+ =
√
αpα +

βpβ

2
√
α
,

P− =
√
αpβ ,

c`PB+ = εc`P
β
√
α

+ τP+ ,

c`PB− = εc`P 2
√
α+ τP− .

(48)

and

Q+ = c`P H̃ Q0 = D − τH̃ , c`PQ− = −2εc`Pβ − 2τD + τ2H̃

• Key difference with the free particle:

sch(2) = (sl(2,R)⊕ so(2))⊕s (R2 ⊕ R2) → sch(2) = (sl(2,R)⊕ so(1, 1))⊕s (R2 ⊕ R2)

J is not a rotation but a boost [BA, Livine, Oriti ’23] [BA, Livine, Oriti, Piani ’22]
• Mean that the black hole particle is propagating on a Lorenztian 2d manifold
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A new symmetry for black hole mechanics
Algebraic characterization of the black hole mass
• Where is the black hole mass in the Schrödinger algebra ?

M ∝ JP− (49)

• Which charge can change the mass ?

{Q0, P±} =
1

2
P± , {Q−, P±} = −B± {J, P±} = ±P±

• Therefore, the conformal sector (Q0, Q−) and the boost J can shift the Schwarzschild mass

Finite transformation
• Finite conformal transformations of the metric components (α, β):

τ̃ = f (τ) =
aτ + b

cτ + d
, α̃(τ̃) = f (τ)α(τ) β̃(τ̃) = f (τ)β(τ) (50)

• Solution for (α, β):

−2εβ =
1

`2
s

(τ − τ0)(τ − τ1) α = k2(τ − τ0)2 (51)

• Symmetry of the action leads to Möbius covariance of the Schwarzschild solution

τ̃1 = f (τ1) , τ̃0 = f (τ0) ˜̀s =
`s√

f (τ1)f (τ0)
k̃ =

k√
f (τ0)

(52)

• Correspond to the change of mass by a Mobius transformation

M = k`s(τ1 − τ0) → ˜̀m = `m
f (τ1)− f (τ0)

f (τ0)
√
f (τ1)(τ1 − τ0)

(53)
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A new symmetry for black hole mechanics

Summary
• Schwarzschild black hole mechanics → Schrödinger-like symmmetry as any mechanical system
• Conformal sector: the Schwarzschild solution enjoys a Möbius covariance

τ → f (τ) =
aτ + b

cτ + d
α→ ḟ α β → ḟ β (54)

with

γr r (τ) =
2β

α
γθθ(τ) = `2

sα (55)

• Not a standard diffeomorphism: metric transforms through an anisotropic Weyl rescaling
• Conformal sector : Schwarzschild black hole → Schwarzschild black hole at different masses
• Realize the initial expectation from the symmetry of ` = 0 mode of static perturbations

What about Schwarzschild-(A)dS mechanics ?

26 / 38



A new symmetry for black hole mechanics
What if we turn on the cosmological constant ?
• Action

Sε[α, β] = εc`P

∫
dτ

[
βα̇2 − 2αα̇β̇

2α2
+
ε

`2
s

−
εα

`2
Λ

]
, (56)

and phase space: {α, pα} = {β, pβ} = 1

H̃(Λ) = H(Λ) +
c`P

`2
s

= −
1

εc`P

[
αpαpβ +

1

2
βp2

β

]
+
c`P

`2
Λ

α (57)

• Schrödinger charges are given by J = 2αpα and

P
(Λ)
+ =

√
αpα +

βpβ

2
√
α
− ε

c2`2
P

`2
Λ

√
α

pβ
,

P− =
√
αpβ ,

c`PB+ = εc`P
1
√
α

[
β − ε

2c2`2
P

3`2
Λ

α

p2
β

]
+ τP

(Λ)
+ ,

c`PB− = εc`P 2
√
α+ τP−

JΛ = 2αpα− ε
4c2`2

P

3`2
Λ

α

pβ
(58)

and

Q+ = c`P H̃
(Λ) Q0 = D − ε

4c2`2
P

3`2
Λ

α

pβ
− τH̃(Λ) , (59)

c`PQ− = −2εc`P

(
β − ε

2c2`2
P

3`2
Λ

α

p2
β

)
− 2τ

(
D −ε

4c2`2
P

3`2
Λ

α

pβ

)
+ τ2H̃(Λ)

• Symmetry is preserved for dS and AdS: sch(2) = (sl(2,R)⊕ so(1, 1))⊕s (R2 ⊕ R2)
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A new symmetry for black hole mechanics

Additional structures: the conformal bridge
• Consider the generator

Λ =
αpα

2
− βpβ (60)

• Consider the transformation of the hamiltonian under its flow

H̃(Λ) = H(0) +
c`P

`2
Λ

α → δεH̃
(Λ) = {Λ, H̃(Λ)} = −ε

c`P

`2
Λ

α (61)

• Generate rescaling of the cosmological constant !
Can freely deform the phase space from Schwarzschild to Schwarzschild-(A)dS

• Algebraically, when `Λ is finite, the generator Λ2 is the Casimir of the sl(2,R) algebra
• When `Λ → +∞, it reduces to a Dirac observable: the mass of the black hole

• Well known structure of "conformal bridge" relating un-trapped and trapped mechanical
systems by conformal transformation
Arnold map : free particle ↔ harmonic oscillator
[Inzunza, Plyushchay, Wipf ’19 ’21]
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A new symmetry for black hole mechanics

• These symmetry transformations does not act as standard diffeomorphism, i.e. not as Lie
derivative on the spacetime metric

• Can we find a geometrical understanding for these symmetries ?
• Can we view them as diffeomrophism on an auxiliary manifold ?
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Geometrizing the dynamics ... and the symmetries
• Consider a mechanical system with potential and n degrees of freedom χa

S[χa, χ̇a, τ ] = cLP

∫
dτ
(

1

2
gab(χ)χ̇aχ̇b − V (χ)

)
• From this kinetic part of the Lagrangian, construct the super-space : Xa = χa

ds2 = gabdXadXb = cLP gab(χ)dχadχb (62)

• Key Idea: Need to treat time on the same foot as the other dynamical field !
• Need new coordinates (u, w) play the role of the time and its conjugated momentum
• Consider the n + 2 extended field space : XA = (u, w, χa)

ds2 = GABdXAdXB = cLP gab(χ)dχadχb + 2dudw − 2cLP V (χ)du2

[Eisenhart ’28] [Duval, Gibbons, Horvathy ’85 ’91 ’00][Bekaert, Morand ’14]
• Null geodesics reproduce the Euler-Lagrange equations of the initial mechanical system
• Conformal isometries of the ED lift ↔ field space symmetries of the mechanical systems

ξ = ξA∂A , LξGAB = Ω2GAB (63)

• Schrödinger observables identified as the conformal isometries of the lift which commute with
null vector ∂w [BA, Livine, Oriti, Piani ’22].

• Additional symmetries: find the full so(4, 2) algebra of charges [BA, Livine, Stankiewicz]
• Symmetries of superspace gab and GAB are different ! Need both
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Conclusion and perspectives
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Conclusion
• Static black hole perturbations describe by 1D mechanical system
• Inherit the conformal symmetry inherent to such system ... also related to the symmetry of
the Sturm-Liouville system

• Generator acts in an auxiliary space (the Einsehart-Duval lift): not spacetime symmetries !
• Provide the origin for the Hui-Joyce-Penco-Salomon-Santoni (HJPSS) symmetry
• Improve their construction and provide a clean criteria to select the Love symmetry out of the
Schrodinger one

• Can we restore the full Schrodinger symmetry at the horizon ?
• Can we generalize to dynamical perturbations ? to QNM ?

• The symmetry found for the ` = 0 mode, the shift of mass, extends to black hole mechanics
• Realization of this symmetry : reformulate black hole mechanics as a 1d system
• Enjoy a Schrödinger symmetry
• Mobius covariance of black hole mechanics : change the mass with conformal transformation
• Extend to Schwarzschild-(A)dS

• Suggest a deeper structure to explore
• Current progress towards generalizations to i) QNM, ii) axi-symmetric GR phase space
• Path to construct non-linear Wheeler-de Witt dynamics for quantum black hole using the
symmetry : quantum black hole as many-body systems → identify analogue models
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More on non-linear Wheeler-de Witt dynamics for quantum black hole

Towards non-linear WdW
• How can we use the Schrödinger symmetry to go beyond the standard WdW quantization ?
• Quantum black hole (just as quantum cosmology) should be understood as many-body
quantum systems emerging from a suitable mean field approximation of quantum gravity

• Concretely, the wave function of the black hole should be regarded as a collective wave
function

• Need to include information on the existence of these quanta and their interaction in the
quantum dynamics
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More on non-linear Wheeler-de Witt dynamics for quantum black hole
Schrödinger symmetry in many-body condensed matter systems
• In general, non-linear Schrödinger equations describing Bose-Einstein condensates does not
enjoy any symmetry

i~∂tΨ(~x, t) =
~2

2m
δi j∇i∇jΨ(~x, t) + gV [Ψ,Ψ∗] V [Ψ,Ψ∗] = |Ψ|2n (64)

• Preserving the Schrödinger symmetry selects uniquely the non-linear extension [Gosh ’06]

V [Ψ,Ψ∗] = |Ψ|2n , d(n − 1) = 2 (65)

• In d = 1, conformal invariance selects the Tonks-Gerardeau equation: V [Ψ,Ψ∗] = |Ψ|6

• In d = 2, conformal invariance selects the Gross-Pitaevskii equation: V [Ψ,Ψ∗] = |Ψ|4

i~∂tΨ(~x, t) =
~2

2m
δi j∇i∇jΨ(~x, t) + g|Ψ|2Ψ∗ (66)

• Moreover, exact solutions to these non-linear equations can be found via the underling
symmetry

Suggest that there is family of symmetry-protected UV non-linear corrections to the WdW
equation to be explored.
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More on non-linear Wheeler-de Witt dynamics for quantum black hole
2d Gross-Pitaevskii condensate
• In d = 2, conformal invariance selects the Gross-Pitaevskii equation:

i~∂tΨ(~x, t) =
~2

2m
δi j∇i∇jΨ(~x, t) + g|Ψ|2Ψ∗ (67)

• Consider stationary solution: Ψ(~x, t) = Φ(~x)e iµt

~2

2m
δi j∇i∇jΦ(~x) + g|Φ|2Φ∗ = µΦ(~x) (68)

• Many well-known properties and solutions related to generation of vortex (rotation):
Berezinskii-Kosterlitz-Thouless phase transition

Non-linear WdW dynamics for the quantum black hole
• BH wave function as a function on the superspace: Ψ := Ψ(α, β)

• Standard procedure, quantize the (shifted) hamiltonian

ĤΨ = G i j∇i∇jΨ(α, β) = µΨ(α, β) (69)

where G i j is the superspace metric, µ =
c`p
`2s
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More on non-linear Wheeler-de Witt dynamics for quantum black hole
2d Gross-Pitaevskii condensate
• In d = 2, conformal invariance selects the Gross-Pitaevskii equation:

i~∂tΨ(~x, t) =
~2

2m
δi j∇i∇jΨ(~x, t) + g|Ψ|2Ψ∗ (70)

• Consider stationary solution: Ψ(~x, t) = Φ(~x)e iµt

~2

2m
δi j∇i∇jΦ(~x) + g|Φ|2Φ∗ = µΦ(~x) (71)

• Many well-known properties and solutions related to generation of vortex (rotation):
Berezinskii-Kosterlitz-Thouless phase transition

Non-linear WdW dynamics for the quantum black hole
• BH wave function as a function on the superspace: Ψ := Ψ(α, β)

• Standard procedure, quantize the hamiltonian

ĤΨ = G i j∇i∇jΨ(α, β) + g|Ψ|2Ψ∗(α, β) = µΨ(α, β) (72)

where G i j is the superspace metric, µ =
c`p
`2s

• Can we import adapt the known properties of 2d GP BEC to quantum black hole ?
Work in progress
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Black hole mechanics: Schwarzschild solution and black hole mass
Black hole mechanics

• Reduced action

Sε[α, β] = εc`P

∫
dτ

[
βα̇2 − 2αα̇β̇

2α2
+
ε

`2
s

−
εα

`2
Λ

]
, (73)

• Metric

ds2 = −ε
α

2β
dτ2 + ε

2β

α
dt2 + `2

sαdΩ2 , (74)

• Solutions to the dynamics

−2εβ =
1

`2
s

(τ − τ0)(τ − τ1)−
k2

3`2
Λ

(τ − τ0)4 (75)

α = k2(τ − τ0)2 (76)

with (τ0, τ1, k) constant of integration
• Standard form of Schwarzschild-(A)dS: rescaling and translation

r = k`s(τ − τ0) , t̃ = t/k`s (77)

gives

−ε
α

2β
= f (r) = 1−

`M

r
−

r2

3`2
Λ

with `M = k`s(τ1 − τ0) (78)

with `m the mass of the black hole
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Black hole mechanics: Schwarzschild solution and black hole mass

Mass of the black hole as a charge
• Metric

ds2 = −ε
α

2β
dτ2 + ε

2β

α
dt2 + `2

sαdΩ2 , (79)

• Solutions to the dynamics

−2εβ =
1

`2
s

(τ − τ0)(τ − τ1)−
k2

3`2
Λ

(τ − τ0)4 (80)

α = k2(τ − τ0)2 (81)

with (τ0, τ1, k) constant of integration
• Mass `m of the black hole

`M = k`s(τ1 − τ0) (82)

• Where is the black hole mass in the Schrödinger algebra ?

J =
c`P

`2
s

(τ1 − τ0) , P− = −ε2c`P k → `M = −ε
2`3
s

c2`2
P

JP−

→ black hole mass as a conserved charge
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