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Context and Motivations

« Black holes physics <+ investigations of the symmetries in General Relativity (and beyond)

« Thermodynamical properties of black holes : quasi-local charges / flux balance laws

Different manifestations of symmetries in GR

* Space-time symmetries under diffeomorphisms :
covariant phase space — well-defined formalism to associate flux -balance law for a
diffeomorphism
[Brown, Henneaux '86] ... [Wald, Zoupas '99]...[Barnich, Brandt '02]
[Freidel, Geiller, Pranzetti '21] ... and many other

« Killing-Yano asymptotic charges [Kastor, Traschen '14]

* Non spacetime symmetries for 2d GR: integrable system
— axi-symmetric phase space of GR, colliding waves : Ehlers/Matzner and Geroch groups
[Geroch '72] ... [Nicolai, Samtleben '96] ... [Penna '22]

* Non spacetime symmetries for 1d GR : treated as a mechanical system
Relevant for cosmology and black hole mechanics
[BA, Livine '19 '20] [Geiller, Livine, Sartini '20] [BA, Livine, Oriti '23]
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Context and Motivations

» Observations of astrophysical black holes have entered in a new era
LIGO-Virgo '15 / Event Horizon Telescope '21/ NanoGRAV '22 / GRAVITY

Trigger many efforts to further develop black hole perturbation theory [Regge, Wheeler '57]
Non-linearities, spectral instability, environmental effects

Can we identify manifestation of fundamental symmetries in compact objects perturbations ?

Examples of universal behavior for compact objects:

— universal behavior of transmission/reflexion coefficients for wave scattering
— conformal symmetry of the wave operator for test fields near black holes
[Maldacena, Strominger '97] [Castro, Maloney, Strominger '10] [Bertini '11]
— equation-of-state independent relation for neutrons stars: I-Love-Q relations
[Yagi, Nunes '17]

— vanishing of tidal deformability of 4d GR black holes in vacuum

[Damour, Nagar '09]

Main goal

* Review the notion of vanishing of Love numbers in 4d GR black holes

* Revisit and improve one proposal to explain it via symmetries using 1d mechanics

« Connect this to the non-spacetime symmetries appearing in 1d symmetry reduced GR
« Explain the techniques to identify these symmetries: embedding / Einsenhart-Duval lift
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* Vanishing of Love numbers and tidal deformation
* Symmetry protection for static perturbations

« Revealing non-standard symmetries of black hole mechanics
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Mystery of the vanishing of black hole's Love numbers
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Mystery of the vanishing of black holes Love numbers

Newtonian Love numbers

Binary system (M, M’) separated by a distance b

M’ generates a tidal environment : purely static quadrupole tide

Utidal ~ 2Py (cos 6)

In the region of size R < b around M, the newtonian potential U reads

_GM 1

R5
u = [rz + 2/@—} EP>(cosh)
2 r3

r

where k> is the Love number : coefficient of the decaying branch

Relativistic Love numbers

Relativistic theory of tidal Love numbers [Damour, Nagar '09] [Binnington, Poisson '09]

R5
gt = —f — 2 |[rP + 2C(r)k§'ﬁ EP»(cos )

Main point: electric Love number k§' (gauge-invariant) counterpart to newtonian one ko
Also new magnetic Love number kg‘ag. Even more complicated when rotating

Main difficulty: ko is defined at finite distance of the object
No good definition of multipole moments at finite distance in GR : generate ambiguities

Current progress [Poisson '20 21 |
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Mystery of the vanishing of black holes Love numbers

Black holes’s Love numbers
« Love numbers can be computed for a large class of self-gravitating objects

* For 4d vacuum solutions of GR, the Love numbers vanish at all order in the multipolar

expansion
R5
gt = —f — 2 [rz + 2C(r)k2elf3] EP>(cos0) 1
r
with 5 ( )(3r2 2
15 r 5r(r—M)(3rcs—6Mr—-2M
C(r)y=——-—logf — = 2
(N =-Tems'9 35 M*f )

divergent as f — 0, so k§' = 0 [Damour, Nagar '09] [Binnington, Poisson '09] [Poisson '21]
» This is no longer true in higher dimensions d > 4 or in modified gravity

Same results with other approaches

* EFT techniques: employ the worldline approach where Love numbers are coupling constant.
Vanishing of LN appears as a fine tuning ! [Kol, Smolkin "12] [Porto '16] [Kalin, Porto '20]

» Test field approximation: compute the profil of spin-0, spin-1 and spin-2 test field on
Schwarzschild or Kerr / No decaying profil is consistent
[Hui, Joyce, Penco, Santoni, Salomon '21]

« This suggests that there might be a symmetry at play which protect BH deformability
Which type of symmetry ?
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Mystery of the vanishing of black holes Love numbers

Love symmetry from near-horizon conformal symmetry

« Near-horizon SL(2,R) symmetry of test fields:
— use the static limit of the near horizon symmetry of the wave operator
— scalar modes organize into the discrete representation of sl(2, R)
— valid only near the horizon
— spacetime symmetry interpretation
[Charalambous, Dubovsky, Ivanov (PRL) '21, '22]

= Near-horizon carrollian structure has been argued to also play a role [Penna '18]

Love symmetry from ladder structure

» New type of symmetry introduced by Hui, Joyce, Penco, Santoni and Salomon (HJPSS)
[HJPSS '21]

« Inspired from previous work on ladders symmetries of de Sitter [Compton, Morrisson '03]
— valid on in the full spacetime bulk
— not spacetime symmetries: no well defined geometrical origin

¢ Goal: try to understand the geometrical origin of the HJPSS symmetry !
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Symmetry of static black hole perturbations
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Symmetry of static black hole perturbations

« Consider a static test scalar field

©(r.0,0) = 0rm(r)Y5(6,¢) ®3)
4,m

» Equation of motion on the Schwarzschild background: z = r(r — rs)
Hepe = 20y +2'0) =L+ 1)pe =0 @y(r) = AgGy(r) + BeDy(r) (4)

* Gy represents the tidal scalar field, D, the static response and B, the Love number
« Ladders operators allow to climb up and down the multipole tower

-1 _ L+2
LZ=ZB,+TZ' L, :zﬁr—Tz', wp=LF...LEpo (5)
HJPSS Love symmetry
* HJPSS conserved charge for the ¢-mode: Q,
Qo= (—28-+2") o, Qupe =Ly 1..LTQoLy....L, ;e [Qe. H]=0 (6)
* HJPSS argument
[0:Gr=QuGr =0, 8Dy =QuDy#0)| (7)

« Conservation of the charge implies that By = 0: trade regularity for symmetry criteria

* What is the geometrical origin of this symmetry ?
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Symmetry of static black hole perturbations

« System is described by a Sturm-Liouville equation

« Look for the conformal symmetry of such 1d system to explain the HJPSS construction
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Symmetry of static black hole perturbations

Conformal symmetry for 1D system:

* Sturm-Liouville equation

Y+ V=0, = Y =ay + a2
* Wronskian is constant:

w = wlr, Po] = Yrs — Yo w' >0

* Two natural conserved charges:

w1 = wlr, ] = P19’ — P, wa = wla, ¥] = Yo’ — P (8)
* Any power of these conserved charges is a conserved charge.
- Qp =wi/2,
:}:xl’ Q7:W22/2, (9)
-T2 Qo = wiwy/2.

« Action of the charge on the solutions space: dilate and squeeze the two branches

1
6o, ¥ ~ —cowy , S Y =~ +cawyy 0¥ = swlewe —avy).  (10)
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Symmetry of static black hole perturbations

Hamiltonian formulation of the Wronskian charges
* Phase space:

i
p_é'kb,

Conformal Noether charges
1 1
QIE Y] = €V = SEYP+EH  £(x) = as¥? + ¥ + ot

where (1, ¥2) are the two linearly independent solutions of the dynamics
Translation Noether charges

1
=9, H=py' —L=2 (P* +V(x)¥?) | (11)

Yix.¥l=xp—xXv%  x=m¥1+n-v% (12)

» Charge algebra for an arbritrary 1d particle in a x-potential
{Qr.Q-}=2wQo, {Qo.Q+}=-wQy, {Qo. Q-}=wQ-. (13)
{QoYe}=F5Ye,  {QuY}=wr, (@ Y4} = —wY_, (14)
Vi Yl =w. (15)

1d Schrédinger algebra: sh(1) = sl(2, R) X (R X R)
The conformal sector transforms solution onto solution with different energy
dQ  0Q

{Q’H}ZE—ETX?&O (16)

What is the action of the level of the action ? 123



Symmetry of static black hole perturbations

Conformal transformation at the level of the action
» Consider 1d field W in a time-dependent potential

S[w]:/de[x,w], with  L[x, 9] =

Consider the finite symmetry transformations

(W2 = viow?].

N =

X X = f(x), (17)
Yx) = PER) = V().
» Non-standard because W,(r) does not transform as a scalar quantity
» Action transform as
1 1d o 1
AS == [ dx<=— (=42 ) — [ZSchlf] + (F)?(V o f) — V| ¢?
5[5 (F97) - [5sentr+ rvon —v]w
Fr f! 2
Sch[f]= — — (= ,
f! 2\ f/
* Noether symmetry if
| Schlf] = 2V — 2(F)’(V o ) (18)
« General feature for such 1d system: conformal symmetry for any form of x-potential
generated by (Q+, Qo)
< Additonnal symmetry under a translation in solution space: generated by Y4
X = X=X, (19)
Y = P(R) = P(x) + x(x) . (20)

Schrédinger symmetry of mechanical system generated by (Q+, Qo, Y+) 133



Symmetry of static black hole perturbations

What does it mean for the HJPSS argument ?
« HJPSS argument is not complete:

041Gy =Q4+Gp =0  04dp=Q4Dy#0

0-G=Q-G#0 §-dp=Q-Dy=0

miss part of the symmetry

* Need an additional criteria to select the growing branch
Criteria

¢ The action has to remain finite under the transformation: compute the boundary term
1 /" dB
6S = f/ dx— < +o0 (21)
2/ dx

2
B(r) = [+ (G))° + o (D)) + G} D3] (c1Ge + 2Dp)? . (22)
with D, diverging as a log at the rs.
« Criteria selects the HJPSS symmetry: only (Q+, Y4) generate finite symmetry transformation
a-=a9=0, and o =0. (23)

« Provide a symmetry protection for the vanishing of Love numbers for 4d GR black holes
[BA, Livine, Mukohyama, Uzan '21]
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Symmetry of static black hole perturbations

Resulting Love symmetry

¢ Love symmetry: abelian sub-algebra of Schrédinger

{Q+. Y4} =0 (24)

» Transformation of the £-mode W, complicated

« Transformation of the zero mode W for Schwarzschild black hole (change of mass)

. Arsr
r—>r:7(>\_l)r+rS (25)

. Vs
Yo — Wo(F) = m¢(f)+n+v r(r—rs) (26)

« Can reproduce this construction for static test field with spin-s
« Can reproduce this for tests fields on Kerr

« Generalize to physical static perturbations
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Symmetry of static black hole perturbations

Results
* Provide a geometrical origin for the HJPSS symmetry
* Provide a suitable criteria to select the HJPSS symmetry as being the Love symmetry

« It can be identified with non-standard conformal symmetry common to any 1D mechanical
systems (free particle, harmonic oscillator ...)

Open questions

« Can we restore the symmetry on the boundary ? By adding new boundary d.o.f 7
¢ Symmetry for each £-multipole: can we resum it 7

« Full symmetry is infinite dimensional

wy = wiyn, ] = Y19 — Yy, wo = wlhe, Y] = o)’ — Yy {wi e} =w.
(27)
with
W w2, wimwi2} = w(nimo — myng) witt Myt me (28)

What is the interpretation of this symmetry ? Charges ?

* How can we generalize to dynamical perturbations ? To quasi-normal modes ?
[work in progress]

* Which lessons for black hole mechanics ?
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Symmetry of static black hole perturbations

¢ The £ = 0 mode of the static perturbations corresponds to a perturbative change of the mass

¢ The £ =1 mode of the static perturbations corresponds to a perturbative change of the
angular momentum

* We have changed the mass of the Schwarzschild black hole by a non-standard symmetry:
— not a spacetime-symmetry

¢ Look for a conformal symmetry of black hole mechanics which changes the Schwarzschild
mass at the non-perturbative level
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Mobius covariance of black hole mechanics
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A new symmetry for black hole mechanics
Black hole mechanics

e Consider the Schwarzschild-de Sitter geometry

2 by 1 2 by 1 - 2 2192
ds*=—(1—-—+ — Jdt"+ (1 - — + — dr® 4 r<dQ
r Z,\ r 4

(29)
A

* Penrose diagram

,,,,,,,, T=0_______ T=00
T T
H HS
R R R
Hy H
T T
"""" r=0 T=o00

* Mechanical system which encodes the geometries of both the T and R regions at once
* Symmetry reduction: each slide is homogeneous
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A new symmetry for black hole mechanics

Black hole mechanics
« Action

S[g] = é /M d*x [R - 2/\] , (30)

* Metric decomposition:

ds? = € (—N?(r)dr® + et (r)dt?) + voo(r)dQ?, (31)

* Homogeneous slice X¢: timelike if e = —1 (T-region) / spacelike if € = +1 (R-region)

ds? = eyre(r)dt? + g (r)dQ? (32)

 Introduce the fields and proceed to gauge fixing:

2B(r 2
o= B0 = 2a(). dr =y nar (33)
a(r) a
* Reduced action for black hole mechanics:
1 4 _ _ Ba2 — 2aaB € ea
e% /de[R—2/\}—Se[a,ﬁ]—eclp/d’r |:W+eg—e%\ , (34)

* Role of the overall constant: IR/UV cut-off (information on the boundary)

1 /ff ?( 5 £0£2
c=— [ dt¢2dQ= , 35
al, s g (35)
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A new symmetry for black hole mechanics

Reformulating black hole mechanics.....

* Phase space and hamiltonian

ecl . . o
pa=—0 (B —af) pg = —eclp— (36)
a a
and 4 2 1
HN) — ) 4 5P CEP HO) — 62 37
+ z a e ety | 3PP +5Pps (37)
. as a particle in a potential
* New canonical pair
1 B
Xp=—4|(—==x2 , X+, Pr}=1. 38
c= o (x2va) . xep) (38)
« Black hole dynamics: 2d particle with non-standard kinetic term
ZP CeP € CZP
HO 4 P o) 4 2P P2 — P2) 4+ =2 (X4 + X_)? 39
+Z§ +e?\°‘ 2C€P(+ 7)+84%\( ++X2) (39)

+ Schwarzschild mechanics, i.e £y — +oo, is 2d free particle (up to the minus sign)

+ Schwarzschild-(A)dS mechanics is a 2d harmonic oscillator (up to the minus sign)

Can known symmetries for the 2d particle be realized in black hole mechanics ?
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A new symmetry for black hole mechanics

Well known symmetries of the free particle
« Action for a 2d free particle
m B .
S[t, X = > /thaXa ae{l2} (40)
with 1
Py = mXa, H= 2—52bPan , {X?, Py} = 62 (41)
m

« Conserved charges: charges for galilean relativity + conformal extension

J=X1P = XoP

By = L[mX; — tP] Q4+ =mH,

By = %[mxz — tP] 2Qp = X1Pl + X2P? — 2Ht,

P 2mQ- = m(X? 4+ X3) — 2t(X1 Pl + XoP?) + 2t2H.
P>

* Form the 2d Schrodinger algebra:
sh(2) = (sI(2, R) x s0(2)) x (R? x R?) (42)

« Conformal extension of the galileean symmetry of mechanics for massive system
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A new symmetry for black hole mechanics

What role does this symmetry play ?
» Classically, conformal extension of the galileean symmetry : charge changes the energy
* Quantum mechanically, it is a symmetry of the free Schrodinger equation

h
BV = —— V32V (43)
2m

Schrodinger symmetry is preserved in specific non-linear extension and potential
h .
O W = 72—v2w + glV|"V*F 4 V(X )W (44)
m

where g encodes the atom-atom interaction strength
Schrodinger symmetry selects quantum corrections in the many-body context

Characterizing quantumness
QM is a field theory: constrain the dynamics of the higher moments of the wave function

2d Schrodinger casimirs encode the deviations from classical mechanics.
Classically

Co

PiB_—P_By—nJ=0 (45)

1
Cs=n (Q% - Q+Q- — ZJ2) —ByB.Q; — P PQ_

1
~(B-P+ + B4+P)Qo+ (B-Ps — B1P)J =0.

* Quantum mechanically, C2 # 0 encodes the squared incertitude
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A new symmetry for black hole mechanics

Schrddinger-like symmetry for Schwarzschild black hole mechanics

« Action ) )
Bas — 2aaB €
Se[a, B] = ectp /dT [T + é] (46)
and phase space: {a, pa} ={B.ps} =1
~ Cep 1 2
H=H =— = 47
+ 2 cctr {apapg + 2Bpﬁ] (47)
« Schrodinger charges are given by J = 2ap, and
Bps B
Py = ——, cddpBy=€clp— Py,
s \/al?a+2\/a clpBy GCP\/a+T+ (48)
P_ = \/apﬁ , CePB_ = €Cep2\/a+ TP_ .
and
Qi = clpH Qu=D—-7H, clpQ_ = —2eclpf — 27D + T°H

Key difference with the free particle:

sch(2) = (sl(2,R) @ s0(2)) ®s (RZ®R?) — |sch(2) = (sl(2,R) ®s0(1,1)) ®s (R? ® R?)

J is not a rotation but a boost [BA, Livine, Oriti '23] [BA, Livine, Oriti, Piani '22]
Mean that the black hole particle is propagating on a Lorenztian 2d manifold
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A new symmetry for black hole mechanics

Algebraic characterization of the black hole mass
* Where is the black hole mass in the Schrédinger algebra ?

M x JP- (49)

* Which charge can change the mass 7
1
{Qo. Pr} = EP:E, {Q@-, Pt} =—Bx {J Pe} ==%Ps
« Therefore, the conformal sector (Qp, Q—) and the boost J can shift the Schwarzschild mass

Finite transformation
« Finite conformal transformations of the metric components (e, B):

Fof(n =200 s =f(matn) B = F(DB() (50)
* Solution for (e, B):
—2¢6 = %2(7'—7'0)(7'—7'1) a = k(T — 79)? (51)

S
* Symmetry of the action leads to Mdbius covariance of the Schwarzschild solution

s k

7’1=f(’7'1) , ':f'ozf(’ro) Z = — EZ (52)
T VA f(n) NGED)
« Correspond to the change of mass by a Mobius transformation
~ f —f
M=kls(ri —70)  —  dp= (ry) — (o) (53)

" (o) /(1) (1 — T0)
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A new symmetry for black hole mechanics

Summary

* Schwarzschild black hole mechanics — Schrédinger-like symmmetry as any mechanical system
« Conformal sector: the Schwarzschild solution enjoys a Mobius covariance

‘r—)f(‘r):aT+b a— fa B — B8 (54)

cTt+d

with 23
Yrr(T) = o Yoo(T) = ega (55)

* Not a standard diffeomorphism: metric transforms through an anisotropic Weyl rescaling
« Conformal sector : Schwarzschild black hole — Schwarzschild black hole at different masses

» Realize the initial expectation from the symmetry of £ = 0 mode of static perturbations

What about Schwarzschild-(A)dS mechanics ?
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A new symmetry for black hole mechanics

What if we turn on the cosmological constant ?

» Action ]
Ba? — 2aa8 € €ex
Se[a,ﬁ] = €CZP/dT |:M + é—g , (56)
and phase space: {a,pa} ={B.ps} =1
. clp 1 1 cl
H(A) H(A) + — ez = E [OtpaPB + 560[23] +T2PC¥ (57)
* Schrodinger charges are given by J = 2ap, and
2c242 o A
B, = o P p( )
w Bpg ey Va chrb edpf [ 363 P o
'D+ = \/apa + —F — € 5
2V L& po clpB_ = eclp2v/a+ TP
P =Vapg., 4c2¢2
N = 200pg— € < 2Pg
3Ly pp
(58)
and
- 4c202 -
Qi =ctpAN  Qo=D e~ P X L[N, (59)
3Ly pp
2c243 4c243 -
clpQ_ = —2eclp —€ < 2P o;) — 27 <D —€ < 2P al +72AW
34/\ P 3l/\ Pg

+ Symmetry is preserved for dS and AdS: sch(2) = (sl(2,R) @ so(1, 1)) ®s (R? @ R?)
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A new symmetry for black hole mechanics

Additional structures: the conformal bridge

« Consider the generator
A Pa

A= -5 Bps (60)

Consider the transformation of the hamiltonian under its flow

AN — HO 4 %a S8 A™ = (A A = _e%a (61)
A N

Generate rescaling of the cosmological constant !
Can freely deform the phase space from Schwarzschild to Schwarzschild-(A)dS

Algebraically, when £, is finite, the generator A? is the Casimir of the sl(2, R) algebra

When 45 — +oo, it reduces to a Dirac observable: the mass of the black hole

Well known structure of "conformal bridge" relating un-trapped and trapped mechanical
systems by conformal transformation

Arnold map : free particle <+ harmonic oscillator

[Inzunza, Plyushchay, Wipf '19 '21]
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A new symmetry for black hole mechanics

¢ These symmetry transformations does not act as standard diffeomorphism, i.e. not as Lie
derivative on the spacetime metric

« Can we find a geometrical understanding for these symmetries ?

* Can we view them as diffeomrophism on an auxiliary manifold ?
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Geometrizing the dynamics ... and the symmetries
« Consider a mechanical system with potential and n degrees of freedom x?

Sx? x?. Tl =cLp /dT (%gab(X)anb - V(x))

From this kinetic part of the Lagrangian, construct the super-space : X = x?

ds? = gapdX?dXP = cLpgap(x)dxdx” (62)

Key ldea: Need to treat time on the same foot as the other dynamical field !
Need new coordinates (u, w) play the role of the time and its conjugated momentum
Consider the n 4 2 extended field space : XA = (u, w, x?)

ds? = GagdXAdXB = cLpgap(x)dx?dx? + 2dudw — 2¢LpV (x)du?

[Eisenhart '28] [Duval, Gibbons, Horvathy '85 '91 '00][Bekaert, Morand '14]
Null geodesics reproduce the Euler-Lagrange equations of the initial mechanical system
Conformal isometries of the ED lift <> field space symmetries of the mechanical systems

£€=¢"0a, LeGag = Gas (63)

Schrédinger observables identified as the conformal isometries of the lift which commute with
null vector 8y, [BA, Livine, Oriti, Piani '22].
Additional symmetries: find the full so(4,2) algebra of charges [BA, Livine, Stankiewicz]

Symmetries of superspace g,, and Gag are different | Need both
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Conclusion and perspectives
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Conclusion

« Static black hole perturbations describe by 1D mechanical system
Inherit the conformal symmetry inherent to such system ... also related to the symmetry of
the Sturm-Liouville system

Generator acts in an auxiliary space (the Einsehart-Duval lift): not spacetime symmetries !
Provide the origin for the Hui-Joyce-Penco-Salomon-Santoni (HJPSS) symmetry

Improve their construction and provide a clean criteria to select the Love symmetry out of the
Schrodinger one

Can we restore the full Schrodinger symmetry at the horizon ?
Can we generalize to dynamical perturbations 7 to QNM ?

The symmetry found for the £ = 0 mode, the shift of mass, extends to black hole mechanics
Realization of this symmetry : reformulate black hole mechanics as a 1d system
Enjoy a Schrodinger symmetry

Mobius covariance of black hole mechanics : change the mass with conformal transformation
Extend to Schwarzschild-(A)dS

Suggest a deeper structure to explore

Current progress towards generalizations to i) QNM, ii) axi-symmetric GR phase space

Path to construct non-linear Wheeler-de Witt dynamics for quantum black hole using the
symmetry : quantum black hole as many-body systems — identify analogue models
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More on non-linear Wheeler-de Witt dynamics for quantum black hole

Towards non-linear WdW

* How can we use the Schrédinger symmetry to go beyond the standard WdW quantization ?

* Quantum black hole (just as quantum cosmology) should be understood as many-body
quantum systems emerging from a suitable mean field approximation of quantum gravity

« Concretely, the wave function of the black hole should be regarded as a collective wave
function

* Need to include information on the existence of these quanta and their interaction in the
quantum dynamics
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More on non-linear Wheeler-de Witt dynamics for quantum black hole

Schrédinger symmetry in many-body condensed matter systems

« In general, non-linear Schrédinger equations describing Bose-Einstein condensates does not
enjoy any symmetry

[
ihoy W (X, t) = %Mv,vj\u(i, t) + gV[V, w¥ VIV, w*] = |w|?" (64)

Preserving the Schrodinger symmetry selects uniquely the non-linear extension [Gosh '06]

VIV, W] = w2, din—1)=2 (65)

+ In d = 1, conformal invariance selects the Tonks-Gerardeau equation: V[V, W*] = |W|®

* In d = 2, conformal invariance selects the Gross-Pitaevskii equation: V[W, W*] = |Ww|*

[ 2
ihdr W (X, t) = ﬂa'fv,-vjw(z t) + gV (66)

Moreover, exact solutions to these non-linear equations can be found via the underling
symmetry

Suggest that there is family of symmetry-protected UV non-linear corrections to the WdW
equation to be explored.
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More on non-linear Wheeler-de Witt dynamics for quantum black hole

2d Gross-Pitaevskii condensate

* In d = 2, conformal invariance selects the Gross-Pitaevskii equation:

m2
ihBr (R, t) = %Mv,vjwz t) + gV (67)

+ Consider stationary solution: W(X, t) = ®(X)ett

m2 . . .
ﬂé’fv,vj¢(x)+g|¢|2q> = pud(X) (68)

* Many well-known properties and solutions related to generation of vortex (rotation):
Berezinskii-Kosterlitz-Thouless phase transition

Non-linear WdW dynamics for the quantum black hole
« BH wave function as a function on the superspace: V := V(a,3)

 Standard procedure, quantize the (shifted) hamiltonian

AV = 6"V, V,W(a,B) = u¥(a.B) (69)
where GY is the superspace metric, p = %
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More on non-linear Wheeler-de Witt dynamics for quantum black hole

2d Gross-Pitaevskii condensate

e In d = 2, conformal invariance selects the Gross-Pitaevskii equation:
n2
ihBrW(X, t) = ﬂéuv,-vjwo?. t) + g|VPur (70)
« Consider stationary solution: W(X, t) = ®(X)e#t
A2
50" ViV,(X) + g|®2d* = pud(x) (71)

= Many well-known properties and solutions related to generation of vortex (rotation):
Berezinskii-Kosterlitz-Thouless phase transition

Non-linear WdW dynamics for the quantum black hole

« BH wave function as a function on the superspace: V := V(a, 3)

e Standard procedure, quantize the hamiltonian

AV =GV, VW (e, B) + gV [V (e, B) = u¥(ex, B) (72)
where G is the superspace metric, u = Cép

» Can we import adapt the known properties of 2d GP BEC to quantum black hole ?
Work in progress
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Black hole mechanics: Schwarzschild solution and black hole mass
Black hole mechanics

* Reduced action

B —2a6B8 € ea
Se[e, B] = eclp/d‘r [%‘2 + @ _ g ’
* Metric X
ds? = —e%d‘r2 + egﬁdt2 + 2adQ?,

« Solutions to the dynamics

_1 K 4
—2¢0 = ej(T—To)(T—Tl) - @(T—TO)

S
o= k2(T — 'ro)2

with (7o, T1, k) constant of integration
« Standard form of Schwarzschild-(A)dS: rescaling and translation

r= kés(T —710) , f=t/kés

gives

a Ly r? .
_G%Zf(r):1_7_ﬂ with |ZM:k€s(Tl—TO)|

with £, the mass of the black hole

(73)

(74)

(75)

(76)

(77)

(78)
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Black hole mechanics: Schwarzschild solution and black hole mass

Mass of the black hole as a charge

* Metric 28
ds® = —e > dr? +e=dt? + £2ad0?, (79)
2B a
¢ Solutions to the dynamics
1 k2 ‘
—2ef = (T —T)(T —71) = 25 (T — 7o) (80)
£2 3¢5
a = k(T —70)? (81)
with (7o, 71, k) constant of integration
* Mass £, of the black hole
| &m = kes(m = 7o) | (82)

* Where is the black hole mass in the Schrodinger algebra ?

ot 203
J= Tgp(ﬁ —T0). P-=—e2clpk - = e 235% P

— black hole mass as a conserved charge
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