
Gottesman-Knill theorem
a -qubit state is a vector that has  components 
its unitary evolution can be described by  unitary 
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exponentially large memory and extremely fast 
processors are required for large n

How many qubits can we follow on a computer with a 16GB memory?



Gottesman-Knill theorem
a -qubit state is a vector that has  components 
its unitary evolution can be described by  unitary 
matrices

n 2n

2n × 2n

it is hard to simulate a large quantum system on a classical computer

exponentially large memory and extremely fast 
processors are required for large n

2 ⋅ 32 ⋅ (2n)2 < 16 × 109 × 8 ∴ 22n−1 < 109 1 byte=8 bit
∴ (2n − 1)log10 2 < 9 log10 2 = 0.30∴ n ≤ 15

How many qubits can we follow on a computer with a 16GB memory?



since each logical operator is a Pauli product with , it can be 
described by  bits  ( , )

±

2n + 1 ±(iα1β1Xα1
1 Zβ1

1 )⋯(iα1β1Xαn
n Zβn

n ) αi, βi ∈ {0,1}

Gottesman-Knill theorem
In the Heisenberg representation, -qubit quantum circuits 
composed of Clifford gates can be described by following the 
evolution of at most  logical operators 

n

2n {X̄1, …, X̄n, Z̄1, …Z̄n}

Clifford circuits can be simulated on a classical computer 
in polynomial time of n

the logical operators require at most  bits2n(2n + 1)



Clifford group gates do not provide a universal set of gates, 
e.g.,  is outside the Clifford group 
the theorem implies that quantum computation is only more 
powerful than classical computation when it uses gates 
outside the Clifford group

T

Gottesman-Knill theorem
Any quantum computer performing only Clifford group 
gates can be perfectly simulated in polynomial time on a 
classical computer.



however circuits using only Clifford group gates also have 
a number of important applications in the area of quantum 
communications - quantum error-correcting codes, 
quantum teleportation,…

Gottesman-Knill theorem
Any quantum computer performing only Clifford group 
gates can be perfectly simulated in polynomial time on a 
classical computer.



Quantum Error-Correcting codes

IIIZ XXXX

ZIZI ZZZZIIZI

stabilizers

start

IIIX

IIZI ZZZI

IIIX IIIX

Λ = I ⊗ I ⊗ I ⊗ |0⟩⟨0 | + X ⊗ X ⊗ X ⊗ |1⟩⟨1 |

|α⟩

|β⟩

|0⟩

|0⟩ H
Λ

Λ(I ⊗ I ⊗ I ⊗ X)Λ = X ⊗ X ⊗ X ⊗ X
Λ(Z ⊗ Z ⊗ Z ⊗ I)Λ = Z ⊗ Z ⊗ Z ⊗ Z

Exercise

Show

using



XXXX |ψ′￼⟩ = |ψ′￼⟩
ZZZZ |ψ′￼⟩ = − |ψ′￼⟩

 errorX
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Λ X
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-1

 errorX

|α⟩

|β⟩

|0⟩

|0⟩ H
Λ

X
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an error anticommuting with a stabilizer can be detected !
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no error

outcome of ZZZZ

|ψ⟩

{ZZZZ, XIII} = 0

|ψ′￼⟩ = X1 |ψ⟩
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Λ X

the state does not collapse, because it’s an eigenstate of the stabilizer!
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ZZZZ
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−ZZZZ

U = X

−XXXX

ZZZZ

Z

−XXXX
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Y

|α⟩

|β⟩

|0⟩

|0⟩ H
Λ

U
error

any 1-qubit Pauli error can be detected 
by stabilizers  and  
2-qubit errors that commute with them 
cannot be detected 🙆 , 🙅

XXXX ZZZZ

XZ, YX XX, YY, ZZ

Quantum Error-Correcting codes



U = aI + bX + cY + dZ |ψ⟩ → a |ψ⟩ + bX1 |ψ⟩ + cY1 |ψ⟩ + dZ1 |ψ⟩
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Quantum Error-Correcting codes
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ZZZZ

|ψ⟩ X1 |ψ⟩ Z1 |ψ⟩ Y1 |ψ⟩

general error:
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|ψ⟩ X1 |ψ⟩ Z1 |ψ⟩ Y1 |ψ⟩

|α⟩
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|0⟩
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Λ

U
error

state after measurement

outcome of XXXX
outcome of ZZZZ

Quantum Error-Correcting codes

|ψ⟩ → a |ψ⟩ + bX1 |ψ⟩ + cY1 |ψ⟩ + dZ1 |ψ⟩

measurement collapses the general error into a Pauli error



+1
+1

+1
-1

-1
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|ψ⟩ X1 |ψ⟩ Z1 |ψ⟩ Y1 |ψ⟩
general error can be corrected by operating the detected Pauli error!
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|0⟩

|0⟩ H
Λ

U
error

state after measurement

outcome of XXXX
outcome of ZZZZ

Quantum Error-Correcting codes

|ψ⟩ → a |ψ⟩ + bX1 |ψ⟩ + cY1 |ψ⟩ + dZ1 |ψ⟩


