BMS symmetry of gravity from Hamiltonian formulation(s)

Sucheta Majumdar
Ecole Normale Supérieure (ENS) Lyon

Institut Denis Poisson, Université de Tours
October 26, 2023

LAB $=X$ LIO
UNIVERSITÉ DE LYON

INSTITUT DES ORIGINES DE LYON

Asymptotic symmetry analysis: the 'usual' way

BMS at \mathcal{I}^{+}: Bondi Approach [Bondi-van der Burg-Metzner-Sachs, 1962]
BMS group as the symmetry of gravity at null infinity for asymptotically flat spacetimes

Asymptotic symmetry analysis: the 'usual' way

BMS at \mathcal{I}^{+}: Bondi Approach [Bondi-van der Burg-Metzner-Sachs, 1962]
BMS group as the symmetry of gravity at null infinity for asymptotically flat spacetimes

- Use Bondi coordinates (u, r, x^{A}), Bondi gauge and impose boundary conditions as $r \rightarrow \infty$

$$
d s^{2}=e^{2 \beta} \frac{V}{r} d u^{2}-2 e^{2 \beta} d u d r+g_{A B}\left(d x^{A}-U^{A} d u\right)\left(d x^{B}-U^{B} d u\right)
$$

Asymptotic symmetry analysis: the 'usual' way

BMS at \mathcal{I}^{+}: Bondi Approach [Bondi-van der Burg-Metzner-Sachs, 1962]

BMS group as the symmetry of gravity at null infinity for asymptotically flat spacetimes

- Use Bondi coordinates (u, r, x^{A}), Bondi gauge and impose boundary conditions as $r \rightarrow \infty$

$$
d s^{2}=e^{2 \beta} \frac{V}{r} d u^{2}-2 e^{2 \beta} d u d r+g_{A B}\left(d x^{A}-U^{A} d u\right)\left(d x^{B}-U^{B} d u\right)
$$

- Look for diffeomorphisms that preserve the form of the metric

Poincaré in the bulk: $\xi^{\mu}(x)=\omega_{\nu}^{\mu} x^{\nu}+a^{\mu}$
(6-dim Lorentz $\left.\omega_{\nu}^{\mu}\right)+\left(4\right.$ translations $\left.a^{\mu}\right): 10 \operatorname{dim}$
Poincaré $=$ Lorentz \ltimes Translations

$$
\downarrow
$$

BMS at $\mathcal{I}^{+}: a^{\mu}$ replaced by a function $\alpha: \infty$-dim
$B M S_{4}=$ Lorentz \ltimes "Supertranslations"

- Define Noether charges and compute the asymptotic algebra

All roads lead to BMS?

Bondi approach: [since 1960s]

- BMS as the asymptotic symmetry group at null infinity
- Further extensions to superrotations, Diff $\left(\mathbb{S}^{2}\right)$, Celestial Holography, $\mathcal{W}_{+\infty}$ algebras
- Links to soft theorems, Ward identities and memory effects, Strominger's IR triangle, ...
[Bondi-van der Burg-Metzner-Sachs '62, Barnich-Troessaert, Hawking-Perry-Strominger Compère, Campiglia, Detournay, Donnay, Freidel, Geiller, Grumiller, Laddha, Pasterski, Puhm, Raclariu, Sen, Sheikh-Jabbari, Zwikel and many more]

All roads lead to BMS?

Bondi approach: [since 1960s]

- BMS as the asymptotic symmetry group at null infinity
- Further extensions to superrotations, Diff $\left(\mathbb{S}^{2}\right)$, Celestial Holography, $\mathcal{W}_{+\infty}$ algebras
- Links to soft theorems, Ward identities and memory effects, Strominger's IR triangle, ...
[Bondi-van der Burg-Metzner-Sachs '62, Barnich-Troessaert, Hawking-Perry-Strominger Compère, Campiglia, Detournay, Donnay, Freidel, Geiller, Grumiller, Laddha, Pasterski, Puhm, Raclariu, Sen, Sheikh-Jabbari, Zwikel and many more]

Conformal Carroll approach: [since 2014]

- BMS group as conformal Carroll group
- Further extensions to other Carrollian structures
- Symmetries of null hypersurfaces, Carrollian field theory, Carrollian fluids
[Duval-Gibbons-Hovarthy '14, Campoleoni, Ciambelli, Donnay, Fiorucci, Freidel, Flanagan, Heffray, Leigh, Obers, Petropoulos, Ruzziconi and many more]

Hamiltonian approach: [since 2017]

- BMS symmetry at spatial infinity from the ADM Hamiltonian action
- Canonical realization of BMS in the ADM phase space
- Relevant for Initial value problem of GR on Cauchy/ Characteristics hypersurfaces, etc.
[Henneaux-Troessaert '17, Fuentealba, Guilini, SM, Matulich, Neogi, Riello, Tanzi, ...]

Two lessons from Dirac

Lesson I: Forms of relativistic dynamics [Dirac 1959]
Three choices of "time" for describing Hamiltonian dynamics of relativistic systems

Instant form:

$$
t=x^{0}
$$

Spacelike foliations

Front form: :

$$
x^{+}=\left(x^{0}+x^{3}\right) / \sqrt{2}
$$

Null foliations

Point form:
$\tau=$ proper time

Hyperbolic foliations

Poincaré algbera splits into
\rightarrow Kinematical generators \mathbb{K} that are "simple"
\rightarrow Dynamical generators or "Hamiltonians" \mathbb{D} that involve time derivatives

Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Gauge theories are constrained Hamiltonian systems

$$
\begin{aligned}
\mathcal{S}_{H}\left[\phi, \pi_{\phi}, \lambda_{i}\right]= & \int d t \int d^{3} x\left(\pi_{\phi} \dot{\phi}-\mathcal{H}-\lambda_{i} \mathcal{G}^{i}\right) \\
& \mathcal{G}^{i} \rightarrow \text { gauge cosntraints, } \lambda_{i} \rightarrow \text { Largrange multipliers }
\end{aligned}
$$

- algorithm for classifying gauge constraints (primary, first-class, ...)
- symmetries generated by first-class constraints

Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Gauge theories are constrained Hamiltonian systems

$$
\begin{aligned}
\mathcal{S}_{H}\left[\phi, \pi_{\phi}, \lambda_{i}\right]= & \int d t \int d^{3} x\left(\pi_{\phi} \dot{\phi}-\mathcal{H}-\lambda_{i} \mathcal{G}^{i}\right) \\
& \mathcal{G}^{i} \rightarrow \text { gauge cosntraints, } \lambda_{i} \rightarrow \text { Largrange multipliers }
\end{aligned}
$$

- algorithm for classifying gauge constraints (primary, first-class, ...)
- symmetries generated by first-class constraints

The usual route: Instant form + Constrained Hamiltonian systems
Many successes: BRST quantization, Duality-invariant actions, Asymptotic symmetries at i^{0}, \ldots

Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Gauge theories are constrained Hamiltonian systems

$$
\begin{aligned}
\mathcal{S}_{H}\left[\phi, \pi_{\phi}, \lambda_{i}\right]= & \int d t \int d^{3} x\left(\pi_{\phi} \dot{\phi}-\mathcal{H}-\lambda_{i} \mathcal{G}^{i}\right) \\
& \mathcal{G}^{i} \rightarrow \text { gauge cosntraints, } \lambda_{i} \rightarrow \text { Largrange multipliers }
\end{aligned}
$$

- algorithm for classifying gauge constraints (primary, first-class, ...)
- symmetries generated by first-class constraints

The usual route: Instant form + Constrained Hamiltonian systems
Many successes: BRST quantization, Duality-invariant actions, Asymptotic symmetries at i^{0}, \ldots

An alternative route: Front form + Constrained Hamiltonian systems

- Gauge constraint in the front form are often solvable
- Provides a Hamiltonian framework for symmetries of null hypersurfaces
- Many successes: Discrete light-cone quantization (DLCQ), Light-cone quantization of strings, UV finiteness of $\mathcal{N}=4$ SYM, Higher-spin cubic action, etc.

BMS symmetry at a glance

Focus of this talk:
BMS-like symmetries (infinite-dimensional extension of Poincaré) using Hamiltonian methods

BMS in Hamiltonian formulations: $(3+1)$ and $(2+2)^{1}$

Part 1: Instant form
$(3+1)$: Hamiltonian dynamics on a spatial hypersurface
\rightarrow BMS symmetry from ADM action
Work done with Oscar Feuntealba, Marc Henneaux, Javier Matulich and Cedric Troessaert
[ArXiv:1904.04495 and ArXiv:2007.12721]

Part 2: Front form
(2+2): Hamiltonian dynamics on a null hypersurface
\rightarrow BMS symmetry from light-cone action
Work done with Sudarshan Ananth and Lars Brink
[ArXiv:2012.07880 and ArXiv:2101.00019]

[^0]
Hamiltonian formulation of GR à la Dirac and ADM

- $3+1$ foliation of spacetime by a family of spacelike surfaces Σ_{t}
- ADM decomposition:
${ }^{(4)} g_{00}=-N^{2}+N^{i} N_{i}$,
${ }^{(4)} g_{0 i}=N_{i}$,
${ }^{(4)} g_{i j}=g_{i j}$

Dynamical variables:
$g_{i j}=$ metric on Σ_{t}
$\pi^{i j}=$ conjugate momenta

ADM action for gravity [Dirac '58, Arnowitt-Deser-Misner '62]

$$
\mathcal{S}_{A D M}\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{3} x\left(\pi^{i j} \dot{g}_{i j}-N \mathcal{H}-N^{i} \mathcal{H}_{i}\right)-\oint B_{\infty}\right\}
$$

Boundary terms B_{∞} ensure a good variational principle [Regge-Teitelboim '74]

Hamiltonian formulation of GR à la Dirac and ADM

ADM action for gravity [Dirac '58, Arnowitt-Deser-Misner '62]

$$
\mathcal{S}_{A D M}\left[g_{i j}, \pi^{i j}, N, N^{i}\right]=\int d t\left\{\int d^{3} x\left(\pi^{i j} \dot{g}_{i j}-N \mathcal{H}-N^{i} \mathcal{H}_{i}\right)-\oint B_{\infty}\right\}
$$

- Lagrange multipliers, N and N^{i} implement the constraints

$$
\mathcal{H}=-\sqrt{g} R+\frac{1}{\sqrt{g}}\left(\pi^{i j} \pi_{i j}-\frac{1}{2} \pi^{2}\right), \quad \mathcal{H}_{i}=-2 \nabla_{j} \pi_{i}^{j}
$$

Constraints generate gauge symmetries

- Symplectic form

$$
\Omega=\int d^{3} x d_{V} \pi^{i j} \wedge d_{V} g_{i j}, \quad d_{V} \equiv \text { exterior derivative in field space }
$$

Phase space : $\left\{g_{i j}, \pi^{i j}\right\}$
Poisson bracket: $\left.\quad\left\{g_{i j}(x), \pi^{k \prime}\left(x^{\prime}\right)\right\}=\delta_{(i}^{(k} \delta_{j)}^{\prime}\right) \delta^{(3)}\left(x-x^{\prime}\right)$

Symmetries of the ADM action

Symmetries \equiv Strict invariance of the symplectic form

$$
\Omega=\int d^{3} \times d_{V} \pi^{i j} \wedge d_{V} g_{i j}
$$

ξ generates a canonical transformation if

$$
\mathcal{L}_{\xi} \Omega=d_{V}\left(\iota_{\xi} \Omega\right)=0 \quad \Rightarrow \quad \iota_{\xi} \Omega=-d_{V} G_{\xi}
$$

G_{ξ} is the generator associated with this canonical transformation.

- Diffeomorphisms:

$$
\begin{aligned}
\delta_{\xi} g_{i j}= & \frac{2 \xi}{\sqrt{g}}\left(\pi_{i j}-\frac{1}{2} g_{i j} \pi\right)+\mathcal{L}_{\xi} g_{i j} \\
\delta_{\xi} \pi^{i j}= & -\xi \sqrt{g}\left(R^{i j}-\frac{1}{2} g^{i j} R\right)+\frac{1}{2} \xi \sqrt{g}\left(\pi_{m n} \pi^{m n}-\frac{1}{2} \pi^{2}\right) \\
& -2 \xi \sqrt{g}\left(\pi^{i m} \pi_{m}^{j}-\frac{1}{2} \pi^{i j} \pi\right)+\sqrt{g}\left(\xi^{\mid i j}-g^{i j} \xi^{\mid m} \mid m\right)+\mathcal{L}_{\xi} \pi^{i j}
\end{aligned}
$$

- Canonical generator for all symmetries

$$
G_{\xi, \xi^{i}}=\int d^{3} x\left(\xi \mathcal{H}+\xi^{i} \mathcal{H}_{i}\right)+Q_{\xi, \xi^{i}}
$$

- Canonical generator for all symmetries

$$
G_{\xi, \xi^{i}}=\int d^{3} x\left(\xi \mathcal{H}+\xi^{i} \mathcal{H}_{i}\right)+Q_{\xi, \xi^{i}}
$$

a) Gauge symmetry: $Q_{\xi, \xi^{i}}=0$

Proper gauge transformations do not affect the physical states
b) True symmetry: $Q_{\xi, \xi^{i}} \neq 0$

Improper gauge transformations affect the physical states

- Canonical generator for all symmetries

$$
G_{\xi, \xi^{i}}=\int d^{3} x\left(\xi \mathcal{H}+\xi^{i} \mathcal{H}_{i}\right)+Q_{\xi, \xi^{i}}
$$

a) Gauge symmetry: $Q_{\xi, \xi^{i}}=0$

Proper gauge transformations do not affect the physical states
b) True symmetry: $Q_{\xi, \xi^{i}} \neq 0$

Improper gauge transformations affect the physical states
E.g. Poincaré symmetry

$$
\begin{aligned}
\xi & =b_{i} x^{i}+a^{0}, \\
\xi^{i} & =\omega^{i}{ }_{j} x^{j}+a^{i}
\end{aligned}
$$

b^{i} boosts, ω_{j}^{i} rotations, a^{0} time translation, a^{i} spatial translations
$Q_{\text {Poincaré }} \neq 0$ but no ∞-dimensional BMS at spatial infinity [Regge-Teitelboim' 74]

How to recover the BMS group at spatial infinity?

How to 'see' BMS symmetry in the ADM formulation?

Hamiltonian action with standard boundary conditions
\downarrow
Carefully relax the boundary conditions

How to 'see' BMS symmetry in the ADM formulation?

Hamiltonian action with standard boundary conditions

\downarrow
Carefully relax the boundary conditions
\square
Ensure finiteness of the ADM action and the symplectic form

How to 'see' BMS symmetry in the ADM formulation?

Hamiltonian action with standard boundary conditions

\downarrow
Carefully relax the boundary conditions

Ensure finiteness of the ADM action and the symplectic form
\square
Check that all Poincaré charges are still canonical

$$
\downarrow
$$

Define canonical generators and compute the asymptotic symmetry algebra

Asymptotic conditions I

First ingredient: fall-off conditions
We use spherical coordinates $\left(r, x^{A}\right)$ where x^{A} are coordinates on the sphere at i^{0}

- Asymptotically flat spacetimes: metric approaches Minkowski as $r \rightarrow \infty$

$$
\begin{aligned}
g_{r r} & =1+\frac{1}{r} \bar{h}_{r r}+\mathcal{O}\left(r^{-2}\right) \\
g_{r A} & =\bar{\lambda}_{A}+\frac{1}{r} h_{r A}^{(2)}+\mathcal{O}\left(r^{-2}\right) \\
g_{A B} & =r^{2} \bar{g}_{A B}+r \bar{h}_{A B}+h_{A B}^{(2)}+\mathcal{O}\left(r^{-1}\right)
\end{aligned}
$$

Barred quantities (e.g., $\bar{h}_{i j}, \bar{\pi}^{i j}$) are functions on the 2-sphere

- Conjugate momenta

$$
\begin{aligned}
\pi^{r r} & =\bar{\pi}^{r r}+\frac{1}{r} \pi_{(2)}^{r r}+\mathcal{O}\left(r^{-2}\right) \\
\pi^{r A} & =\frac{1}{r} \bar{\pi}^{r A}+\frac{1}{r^{2}} \pi_{(2)}^{r A}+\mathcal{O}\left(r^{-3}\right), \\
\pi^{A B} & =\frac{1}{r^{2}} \bar{\pi}^{A B}+\frac{1}{r^{3}} \pi_{(2)}^{A B}+\mathcal{O}\left(r^{-4}\right) .
\end{aligned}
$$

Asymptotic conditions I

First ingredient: fall-off conditions
We use spherical coordinates $\left(r, x^{A}\right)$ where x^{A} are coordinates on the sphere at i^{0}

- Asymptotically flat spacetimes: metric approaches Minkowski as $r \rightarrow \infty$

$$
\begin{aligned}
g_{r r} & =1+\frac{1}{r} \bar{h}_{r r}+\mathcal{O}\left(r^{-2}\right) \\
g_{r A} & =\bar{\lambda}_{A}+\frac{1}{r} h_{r A}^{(2)}+\mathcal{O}\left(r^{-2}\right) \\
g_{A B} & =r^{2} \bar{g}_{A B}+r \bar{h}_{A B}+h_{A B}^{(2)}+\mathcal{O}\left(r^{-1}\right)
\end{aligned}
$$

Barred quantities (e.g., $\bar{h}_{i j}, \bar{\pi}^{i j}$) are functions on the 2-sphere

- Conjugate momenta

$$
\begin{aligned}
\pi^{r r} & =\bar{\pi}^{r r}+\frac{1}{r} \pi_{(2)}^{r r}+\mathcal{O}\left(r^{-2}\right) \\
\pi^{r A} & =\frac{1}{r} \bar{\pi}^{r A}+\frac{1}{r^{2}} \pi_{(2)}^{r A}+\mathcal{O}\left(r^{-3}\right), \\
\pi^{A B} & =\frac{1}{r^{2}} \bar{\pi}^{A B}+\frac{1}{r^{3}} \pi_{(2)}^{A B}+\mathcal{O}\left(r^{-4}\right) .
\end{aligned}
$$

This part is the same as that of Regge-Teitelboim

Asymptotic conditions II

Second ingredient: parity conditions on leading terms
"Gauge-twisted" parity conditions: [Henneaux-Troessaert '18]

$$
\begin{aligned}
\bar{h}_{r r} & =\text { even } \\
\bar{\lambda}_{A} & =\left(\bar{\lambda}_{A}\right)^{\text {odd }}+\bar{D}_{A} \zeta_{r}-\bar{\zeta}_{A}, \\
\bar{h}_{A B} & =\left(\bar{h}_{A B}\right)^{\text {even }}+\bar{D}_{A} \bar{\zeta}_{B}+\bar{D}_{B} \bar{\zeta}_{A}+2 \bar{g}_{A B} \zeta_{r} \\
\bar{\pi}^{r r} & =\left(\bar{\pi}^{r r}\right)^{\text {odd }}-\sqrt{\bar{g}} \bar{\triangle} V \\
\bar{\pi}^{r A} & =\left(\bar{\pi}^{r A}\right)^{\text {even }}-\sqrt{\bar{g}} \bar{D}^{A} V \\
\bar{\pi}^{A B} & =\left(\bar{\pi}^{A B}\right)^{\text {odd }}+\sqrt{\bar{g}}\left(\bar{D}^{A} \bar{D}^{B} V-\bar{g}^{A B} \bar{\triangle} V\right)
\end{aligned}
$$

Parity: $(r, \theta, \phi) \rightarrow(r, \pi-\theta, \phi+2 \pi)$

Recall:
\oint (odd function) $=0$ on the sphere

With these parity conditions, Hamiltonian action and symplectic form are finite as $r \rightarrow \infty$
Generalization of Regge-Teitelboim strict parity conditions

Asymptotic conditions III

- Third ingredient: stronger fall-off of the constraints

$$
\mathcal{H} \sim \mathcal{O}\left(r^{-3}\right), \quad \mathcal{H}_{i} \sim \mathcal{O}\left(r^{-3}\right)
$$

to remove divergent conributions to Poincaré charges

- Fourth ingredient: Involves the mixed radial-angular component, $\bar{h}_{r A} \rightarrow$ more on this later
- Fall-off of the Poincaré $\left(\xi, \xi^{i}\right)$:

$$
\begin{aligned}
\xi & =b r+a^{0} \\
\xi^{r} & =w_{1} \\
\xi^{A} & =Y^{A}+\frac{1}{r} \bar{D}^{A} w_{1}
\end{aligned}
$$

Y^{A} rotations, b boosts, a^{0} time translations, w_{1} spatial translations

Asymptotic conditions III

- Third ingredient: stronger fall-off of the constraints

$$
\mathcal{H} \sim \mathcal{O}\left(r^{-3}\right), \quad \mathcal{H}_{i} \sim \mathcal{O}\left(r^{-3}\right)
$$

to remove divergent conributions to Poincaré charges

- Fourth ingredient: Involves the mixed radial-angular component, $\bar{h}_{r A} \rightarrow$ more on this later
- Fall-off of the Poincaré $\left(\xi, \xi^{i}\right)$:

$$
\begin{aligned}
\xi & =b r+a^{0} \\
\xi^{r} & =w_{1} \\
\xi^{A} & =Y^{A}+\frac{1}{r} \bar{D}^{A} w_{1}
\end{aligned}
$$

Y^{A} rotations, b boosts, a^{0} time translations, w_{1} spatial translations

Next step: Check if Poincaré generators are still canonical

Canonical realization of Poincare generators

Strict invariance of the symplectic form

$$
\Omega=\int d^{3} x d_{V} \pi^{i j} \wedge d_{V} g_{i j}
$$

ξ generates a canonical transformation if

$$
\mathcal{L}_{\xi} \Omega=d_{V}\left(\iota_{\xi} \Omega\right)=0 \quad \Rightarrow \quad \iota_{\xi} \Omega=-d_{V} G_{\xi}
$$

G_{ξ} is the generator associated with this canonical transformation.

- Under Lorentz rotations Y^{A} and spacetime translations $\left(a^{0}, a^{i}\right)$,

$$
\mathcal{L}_{\left(Y^{A}, a^{0}, a^{i}\right)} \Omega=0 \quad \Rightarrow \quad \text { Canonical generators well-defined }
$$

- Under Lorentz boosts b (in spherical coordinates)

$$
\begin{aligned}
d_{V}\left(\iota_{b} \Omega\right)= & -\int d \theta d \varphi \sqrt{\bar{g}}\left[b d_{V} \bar{h} d_{V}\left(\bar{h}_{r r}+\bar{D}_{A} \bar{\lambda}^{A}\right)\right. \\
& \left.\left.-\bar{D}_{A} b d_{V} \bar{\lambda}^{A} d_{V} \bar{h}+b \bar{D}^{A} d_{V} \bar{\lambda}^{B} d_{V} \bar{h}_{A B}\right)\right] \neq 0
\end{aligned}
$$

How to make the symplectic form invariant under boosts?

Non-integrability of the boost generators: Resolution

- Perform a gauge transformation

$$
\begin{aligned}
& \epsilon_{(b)} \equiv b F, \quad \text { F is field-dependent } \\
& d_{V}\left(\iota_{b} \Omega\right)+d_{V}\left(\iota_{\epsilon(b)} \Omega\right)=-\int d \theta d \varphi \sqrt{\bar{g}}\left[2 b\left(d_{V} F+\frac{1}{2} d_{V} \bar{h}\right) d_{V}\left(\bar{h}_{r r}+\bar{D}_{A} \bar{\lambda}^{A}\right)\right. \\
&\left.-\bar{D}_{A} b d_{V} \bar{\lambda}^{A} d_{V} \bar{h}+b \bar{D}^{A} d_{V} \bar{\lambda}^{B} d_{V} \bar{h}_{A B}\right] \\
& \text { Set } F=-\frac{1}{2} \bar{h}
\end{aligned}
$$

Non-integrability of the boost generators: Resolution

- Perform a gauge transformation

$$
\begin{aligned}
\epsilon_{(b)} \equiv & b F, \quad \text { Fis field-dependent } \\
d_{V}\left(\iota_{b} \Omega\right)+d_{V}\left(\iota_{\epsilon(b)} \Omega\right) & =-\int d \theta d \varphi \sqrt{\bar{g}}\left[2 b\left(d_{V} F+\frac{1}{2} d_{V} \bar{h}\right) d_{V}\left(\bar{h}_{r r}+\bar{D}_{A} \bar{\lambda}^{A}\right)\right. \\
& \left.-\bar{D}_{A} b d_{V} \bar{\lambda}^{A} d_{V} \bar{h}+b \bar{D}^{A} d_{V} \bar{\lambda}^{B} d_{V} \bar{h}_{A B}\right]
\end{aligned}
$$

$$
\text { Set } F=-\frac{1}{2} \bar{h}
$$

- Fourth ingredient of asymptotic conditions (Recall: $h_{r A}=\bar{\lambda}_{A}+\mathcal{O}\left(r^{-1}\right)$)

$$
\int d \theta d \varphi \sqrt{\bar{g}}\left[\bar{D}_{A} b d_{V} \bar{\lambda}^{A} d_{V} \bar{h}-b \bar{D}^{A} d_{V} \bar{\lambda}^{B} d_{V} \bar{h}_{A B}\right]
$$

$$
\text { Set } \bar{\lambda}_{A}=0
$$

$$
d_{V}\left(\iota_{b} \Omega\right)=0 \Rightarrow \iota_{b} \Omega=-d_{V} G_{b} \quad \rightarrow \quad \text { Boosts are canonical again! }
$$

No need for an extra boundary field in order to define canonical generators: more on this later

Finally, the new boundary conditions read

$$
\begin{aligned}
g_{r r} & =1+\frac{1}{r} \bar{h}_{r r}+\ldots, \\
g_{r A} & =\bar{X}_{A}+\frac{1}{r} h_{r A}^{(2)}+\ldots \\
g_{A B} & =r^{2} \bar{g}_{A B}+r \bar{h}_{A B}+h_{A B}^{(2)}+\ldots
\end{aligned}
$$

$$
\begin{aligned}
\pi^{r r} & =\bar{\pi}^{r r}+\frac{1}{r} \pi_{(2)}^{r r}+\ldots \\
\pi^{r A} & =\frac{1}{r} \bar{\pi}^{r A}+\frac{1}{r^{2}} \pi_{(2)}^{r A}+\ldots, \\
\pi^{A B} & =\frac{1}{r^{2}} \bar{\pi}^{A B}+\frac{1}{r^{3}} \pi_{(2)}^{A B}+\ldots
\end{aligned}
$$

With gauge-twisted parity conditions

$$
\begin{aligned}
\bar{h}_{r r} & =\text { even }, \\
\bar{\lambda}_{A} & =\left(\bar{\lambda}_{A}\right)^{\text {odd }}+\bar{D}_{A} \zeta_{r}-\bar{\zeta}_{A}=0 \Rightarrow \bar{\zeta}_{A}=\bar{D}_{A} \zeta_{r}=\bar{D}_{A} U \\
\bar{h}_{A B} & =\left(\bar{h}_{A B}\right)^{\text {even }}+2\left(\bar{D}_{A} \bar{D}_{B} U+\bar{g}_{A B} U\right) \\
\bar{\pi}^{r r} & =\left(\bar{\pi}^{r r}\right)^{\text {odd }}-\sqrt{\bar{g}} \bar{\Delta} V \\
\bar{\pi}^{r A} & =\left(\bar{\pi}^{r A}\right)^{\text {even }}-\sqrt{\bar{g}} \bar{D}^{A} V \\
\bar{\pi}^{A B} & =\left(\bar{\pi}^{A B}\right)^{\text {odd }}+\sqrt{\bar{g}}\left(\bar{D}^{A} \bar{D}^{B} V-\bar{g}^{A B} \bar{\triangle} V\right)
\end{aligned}
$$

Regge-Teitelboim parity conditions relaxed with two functions: U odd and V even

Are there more symmetries?

Yes, diffeos $x^{\mu} \rightarrow x^{\mu}+\epsilon^{\mu}(x)$ with parameters

$$
\epsilon^{0}(\theta, \phi)=T^{\text {even }}, \quad \epsilon^{i}(\theta, \phi)=\partial_{i} W^{\text {odd }} \quad \rightarrow \quad \text { one single arbitrary function } \mathcal{T}(\theta, \phi)
$$

- Time component of gauge parameter

$$
\epsilon^{0}=T^{\text {even }}=T_{0}+T_{2}+T_{4}+T_{6}+\cdots
$$

- Spatial components

$$
\begin{gathered}
\epsilon^{i}=\bar{\epsilon}^{i}+\mathcal{O}\left(r^{-1}\right), \quad \bar{\epsilon}^{i}=D^{i}(r W) \\
W^{r}=W=W_{1}+W_{3}+W_{5}+W_{7}+\cdots, \quad W^{A}=\frac{1}{r} \bar{D}^{A} W
\end{gathered}
$$

Are there more symmetries?

Yes, diffeos $x^{\mu} \rightarrow x^{\mu}+\epsilon^{\mu}(x)$ with parameters

$$
\epsilon^{0}(\theta, \phi)=T^{\text {even }}, \quad \epsilon^{i}(\theta, \phi)=\partial_{i} W^{\text {odd }} \quad \rightarrow \quad \text { one single arbitrary function } \mathcal{T}(\theta, \phi)
$$

- Time component of gauge parameter

$$
\epsilon^{0}=T^{\text {even }}=T_{0}+T_{2}+T_{4}+T_{6}+\cdots
$$

- Spatial components

$$
\begin{gathered}
\epsilon^{i}=\bar{\epsilon}^{i}+\mathcal{O}\left(r^{-1}\right), \quad \bar{\epsilon}^{i}=D^{i}(r W) \\
W^{r}=W=W_{1}+W_{3}+W_{5}+W_{7}+\cdots, \quad W^{A}=\frac{1}{r} \bar{D}^{A} W
\end{gathered}
$$

- Where are the spacetime translations? Expand $T(\theta, \phi)$ in spherical harmonics

$$
\begin{aligned}
\mathcal{T}(\theta, \phi)= & T_{0,0} Y_{0,0}+\sum_{m=-1}^{1} W_{1, m} Y_{1, m}+\underbrace{\frac{1}{4} \sum_{m=-2}^{2} T_{2, m} Y_{2, m}+\cdots}_{\text {spatial }} \\
& \text { time }{\text { translations } a^{0} \quad \text { translations } a^{i}}^{\text {supertranslations }}
\end{aligned}
$$

Asymptotic symmetries at spatial infinity

- Canonical generator for BMS

$$
\begin{aligned}
G_{\xi, \xi^{i}}= & \int d^{3} x\left(\xi \mathcal{H}+\xi^{i} \mathcal{H}_{i}\right)+Q_{\xi, \xi^{i}}, \\
Q_{\xi, \xi^{i}}= & \int d \theta d \varphi\left\{b\left[\sqrt{\bar{g}}\left(-\frac{1}{2} \bar{h} \bar{h}_{r r}+\frac{1}{4} \bar{h}^{2}-\frac{3}{4} \bar{h}_{A B} \bar{h}^{A B}\right)+\frac{2}{\sqrt{\bar{g}}} \bar{\pi}_{A}^{r} \bar{\pi}^{r A}\right]+2 Y_{A} \bar{\pi}^{r B} \bar{h}_{B}^{A}\right. \\
& +2 \sqrt{\bar{g}} T \underbrace{\bar{h}_{r r}}_{\text {even }}+2 W \underbrace{\left(\bar{\pi}^{r r}-\bar{\pi}_{A}^{A}\right)}_{\text {odd }}\}
\end{aligned}
$$

($T_{\text {odd }}, W_{\text {even }}$) \rightarrow proper gauge transformations
($T_{\text {even }}, W_{\text {odd }}$) \rightarrow improper gauge transformations: Supertranslations

- Poisson bracket algebra

$$
\left\{G_{\xi_{1}, \xi_{1}^{i}}, G_{\xi_{2}, \xi_{2}^{i}}\right\}=\hat{G}_{\hat{\xi}, \hat{\xi}^{i}}
$$

Asymptotic symmetry algebra of gravity at spatial infinity

$$
B M S_{4}=S O(3,1) \ltimes \text { supertranslations }
$$

Asymptotic symmetry algebra

- Poisson bracket algebra

$$
\left\{G_{\xi_{1}, \xi_{1}^{i}}, G_{\xi_{2}, \xi_{2}^{i}}\right\}=\hat{G}_{\hat{\xi}, \hat{\xi}^{i}}
$$

with the parameters

$$
\begin{aligned}
\hat{Y}^{A} & =Y_{1}^{B} \partial_{B} Y_{2}^{A}+\bar{\gamma}^{A B} b_{1} \partial_{B} b_{2}-(1 \leftrightarrow 2), \\
\hat{b} & =Y_{1}^{B} \partial_{B} b_{2}-(1 \leftrightarrow 2), \\
\hat{T} & =Y_{1}^{A} \partial_{A} T_{2}-3 b_{1} W_{2}-\partial_{A} b_{1} \bar{D}^{A}-2 W-b_{1} \bar{D}_{A} \bar{D}^{A} W_{2}-(1 \leftrightarrow 2), \\
\hat{W} & =Y_{1}^{A} \partial_{A} W_{2}-b_{1} T_{2}-(1 \leftrightarrow 2)
\end{aligned}
$$

- BMS as the infinite-dimensional enhancement of Poincaré, $G_{\xi, \xi^{i}}=G_{\text {Lorentz }}+G_{T, W}$

Asymptotic symmetry algebra

- Poisson bracket algebra

$$
\left\{G_{\xi_{1}, \xi_{1}^{i}}, G_{\xi_{2}, \xi_{2}^{i}}\right\}=\hat{G}_{\hat{\xi}, \hat{\xi}^{i}}
$$

with the parameters

$$
\begin{aligned}
\hat{Y}^{A} & =Y_{1}^{B} \partial_{B} Y_{2}^{A}+\bar{\gamma}^{A B} b_{1} \partial_{B} b_{2}-(1 \leftrightarrow 2), \\
\hat{b} & =Y_{1}^{B} \partial_{B} b_{2}-(1 \leftrightarrow 2), \\
\hat{T} & =Y_{1}^{A} \partial_{A} T_{2}-3 b_{1} W_{2}-\partial_{A} b_{1} \bar{D}^{A}-2 W-b_{1} \bar{D}_{A} \bar{D}^{A} W_{2}-(1 \leftrightarrow 2), \\
\hat{W} & =Y_{1}^{A} \partial_{A} W_{2}-b_{1} T_{2}-(1 \leftrightarrow 2)
\end{aligned}
$$

- BMS as the infinite-dimensional enhancement of Poincaré, $G_{\xi, \xi^{i}}=G_{\text {Lorentz }}+G_{T, W}$

$$
\begin{array}{rlr}
\left\{G_{\text {Lorentz }}, G_{\text {Lorentz }}\right\}=G_{\text {Lorentz }} & & \left\{G_{\text {Lorentz }}, G_{\text {Lorentz }}\right\}=G_{\text {Lorentz }} \\
\left\{G_{\text {Lorentz }}, G_{a, a^{i}}\right\}=\hat{G}_{\left(\hat{a}, \hat{a}^{i}\right)} & G_{a, a^{i}} \rightarrow G_{T, W} & \left\{G_{\text {Lorentz }}, G_{T, W}\right\}=\hat{G}_{\hat{T}, \hat{W}} \\
\left\{G_{a, a^{i}}, G_{a, a^{i}}\right\} & =0 & \\
\left\{G_{T, W}, G_{T, W}\right\}=0
\end{array}
$$

BMS in Hamiltonian formulations: $(3+1)$ and $(2+2)$

Part 1: Instant form
$(3+1)$: Hamiltonian dynamics on a spatial hypersurface
\rightarrow BMS symmetry from ADM action
Work done with Oscar Feuntealba, Marc Henneaux, Javier Matulich and Cedric Troessaert
[ArXiv:1904.04495 and ArXiv:2007.12721]

Part 2: Front form
(2+2): Hamiltonian dynamics on a null hypersurface
\rightarrow BMS symmetry from light-cone action
Work done with Sudarshan Ananth and Lars Brink
[ArXiv:2012.07880 and ArXiv:2101.00019]

Poincaré algebra in Dirac's front form

- Light-cone coordinates

$$
x^{+}=\frac{x^{0}+x^{3}}{\sqrt{2}}, \quad x^{-}=\frac{x^{0}-x^{3}}{\sqrt{2}}, \quad x^{i} \quad(i=1,2)
$$

$$
x^{+} \quad \text { Light-cone time } \quad \Rightarrow \quad P_{+}=i \partial_{+}=-P^{-} \quad \text { Hamiltonian }
$$

- The three "Hamiltonians" in the front form

Poincaré generators in the instant form: $\left(P_{\mu}, M_{\mu \nu}\right)$

$$
[P, P] \sim 0, \quad[P, M] \sim P, \quad[M, M] \sim M
$$

$\left(P_{0}, M_{0 i}\right) \rightarrow$ four dynamical generators or "Hamiltonians"
Poincaré generators in front form

$$
\begin{aligned}
& \text { Kinematical } \mathbb{K}=\left\{P^{i}, P^{+}, M^{i j}, M^{+i}, M^{+-}\right\}, \quad(i=1,2) \\
& \text { Dynamical } \mathbb{D}=\{P^{-}, M^{i-} \equiv \underbrace{J^{-}, \bar{J}^{-}}_{2 \text { boosts }}\} \rightarrow \text { three "Hamiltonians" in the front form } \\
& \qquad[\mathbb{K}, \mathbb{K}]=\mathbb{K}, \quad[\mathbb{K}, \mathbb{D}]=\mathbb{D}, \quad[\mathbb{D}, \mathbb{D}]=0
\end{aligned}
$$

Poincaré algebra in front form has a Carrollian structure - isometry of null hypersurfaces

Null-front Hamiltonian formulation of gravity

"Forms of relativistic dynamics" [Dirac '49] \rightarrow Use a null time parameter to study dynamics

Null-front Hamiltonian formulation of gravity

"Forms of relativistic dynamics" [Dirac '49] \rightarrow Use a null time parameter to study dynamics "On the characteristic initial value problem in gravitational theory"
[R. K. Sachs '62]
"Covariant 2+2 formulation of the initial-value problem in general relativity"
[d'Inverno and Smallwood '79] [Gambini-Restuccia, C. Torre, M. Kaku,...]

- Spacelike foliation of codim 2 (instead of 1)
- Unconstrained Hamiltonian systems: constraint equations often become solvable
- Gravitational d.o.f. identified with the "conformal two-metric"

Null-front Hamiltonian formulation of gravity

"Forms of relativistic dynamics" [Dirac '49] \rightarrow Use a null time parameter to study dynamics "On the characteristic initial value problem in gravitational theory"
[R. K. Sachs '62]
"Covariant 2+2 formulation of the initial-value problem in general relativity"
[d'Inverno and Smallwood '79] [Gambini-Restuccia, C. Torre, M. Kaku,...]

- Spacelike foliation of codim 2 (instead of 1)
- Unconstrained Hamiltonian systems: constraint equations often become solvable
- Gravitational d.o.f. identified with the "conformal two-metric"

Our focus:

- Set up a particular example of the 2+2 formulation: $I c_{2}$ gravity [Scherk-Schwarz' 75]
- Study the BMS symmetry from residual gauge invariance

Gravity in the light-cone gauge

" $/ c_{2}$ formalism" [Scherk-Schwarz, Schwarz-Goroff, Bengtsson-Cederwall-Lindgren]

- Light-cone gauge: Set the "minus" components to zero

$$
g_{--}=g_{-i}=0, \quad(i=1,2) \quad 10-3=7
$$

Parametrization

$$
g_{+-}=-e^{\phi}, \quad g_{i j}=e^{\psi} \gamma_{i j}
$$

$\phi, \psi, \gamma_{i j}$ are real and $\operatorname{det} \gamma_{i j}=1$

Light-cone metric

$$
\begin{gathered}
d S_{L C}^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=-2 e^{\phi} d x^{+} d x^{+}+g_{++}\left(d x^{+}\right)^{2}+g_{+i} d x^{+} d x^{i}+e^{\psi} \gamma_{i j} d x^{i} d x^{j} \\
\text { given in terms of } 7 \text { functions }\left\{\phi, \psi, \gamma_{i j}, g_{++}, g_{+i}\right\}
\end{gathered}
$$

- " $2+2$ " split of the Einstein field equations $R_{\mu \nu}=0$ [Sachs, d'Inverno-Smallwood, ...]

Dynamical equations: $R_{i j}=0$
Constraint equations: $R_{--}=R_{-i}=0$
Subsidiary equations: $R_{++}=R_{+i}=0$
Trivial equations: $R_{+-}=0$

Gravity in the light-cone gauge

Can we solve the constraint equations? Subject to choice of coordinates, gauge conditions, etc.

- Constraint equation $R_{--}=0$

$$
2 \partial_{-} \phi \partial_{-} \psi-\left(\partial_{-} \psi\right)^{2}-2 \partial_{-}^{2} \psi+\frac{1}{2} \partial_{-} \gamma^{i j} \partial_{-} \gamma_{i j}=0 .
$$

Fourth gauge choice : [Scherk-Schwarz]

$$
\phi=\frac{\psi}{2} \quad 7-1=6
$$

allows us to integrate ${ }^{2}$ out ψ

$$
\psi=\frac{1}{4} \frac{1}{\partial_{-}^{2}}\left(\partial_{-} \gamma^{i j} \partial_{-} \gamma^{i j}\right) \quad 6-1=5
$$

- The constraint $R_{-i}=0$ eliminates g_{+i}

$$
5-2=3
$$

- $R_{-+}=0$ allows us to eliminates g_{++}

$$
3-1=2
$$

[^1]Integration constants set to zero for asymptotically Minkowski spacetimes

Light-cone action for gravity

- Closed form expression

$$
\begin{aligned}
S\left[\gamma_{i j}\right]= & \frac{1}{2 \kappa^{2}} \int d^{4} x e^{\psi}\left(2 \partial_{+} \partial_{-} \phi+\partial_{+} \partial_{-} \psi-\frac{1}{2} \partial_{+} \gamma^{i j} \partial_{-} \gamma_{i j}\right)-\frac{1}{2} e^{\phi-2 \psi} \gamma^{i j} \frac{1}{\partial_{-}} R_{i} \frac{1}{\partial_{-}} R_{j}, \\
& -e^{\phi} \gamma^{i j}\left(\partial_{i} \partial_{j} \phi+\frac{1}{2} \partial_{i} \phi \partial_{j} \phi-\partial_{i} \phi \partial_{j} \psi-\frac{1}{4} \partial_{i} \gamma^{k l} \partial_{j} \gamma_{k l}+\frac{1}{2} \partial_{i} \gamma^{k l} \partial_{k} \gamma_{j l}\right)
\end{aligned}
$$

where

$$
R_{i} \equiv e^{\psi}\left(\frac{1}{2} \partial_{-} \gamma^{j k} \partial_{i} \gamma_{j k}-\partial_{-} \partial_{i} \phi-\partial_{-} \partial_{i} \psi+\partial_{i} \phi \partial_{-} \psi\right)+\partial_{k}\left(e^{\psi} \gamma^{j k} \partial_{-} \gamma_{i j}\right)
$$

Light-cone action for gravity

- Closed form expression

$$
\begin{aligned}
S\left[\gamma_{i j}\right]= & \frac{1}{2 \kappa^{2}} \int d^{4} x e^{\psi}\left(2 \partial_{+} \partial_{-} \phi+\partial_{+} \partial_{-} \psi-\frac{1}{2} \partial_{+} \gamma^{i j} \partial_{-} \gamma_{i j}\right)-\frac{1}{2} e^{\phi-2 \psi} \gamma^{i j} \frac{1}{\partial_{-}} R_{i} \frac{1}{\partial_{-}} R_{j}, \\
& -e^{\phi} \gamma^{i j}\left(\partial_{i} \partial_{j} \phi+\frac{1}{2} \partial_{i} \phi \partial_{j} \phi-\partial_{i} \phi \partial_{j} \psi-\frac{1}{4} \partial_{i} \gamma^{k l} \partial_{j} \gamma_{k l}+\frac{1}{2} \partial_{i} \gamma^{k l} \partial_{k} \gamma_{j l}\right)
\end{aligned}
$$

where

$$
R_{i} \equiv e^{\psi}\left(\frac{1}{2} \partial_{-} \gamma^{j k} \partial_{i} \gamma_{j k}-\partial_{-} \partial_{i} \phi-\partial_{-} \partial_{i} \psi+\partial_{i} \phi \partial_{-} \psi\right)+\partial_{k}\left(e^{\psi} \gamma^{j k} \partial_{-} \gamma_{i j}\right)
$$

- Perturbative expansion

$$
\gamma_{i j}=\left(e^{\kappa H}\right)_{i j}, \quad H=\left(\begin{array}{cc}
h_{11} & h_{12} \\
h_{12} & -h_{11}
\end{array}\right)
$$

Complexify the fields (and x^{i})

$$
h=\frac{1}{\sqrt{2}}\left(h_{11}+i h_{12}\right), \quad \bar{h}=\frac{1}{\sqrt{2}}\left(h_{11}-i h_{12}\right)
$$

h and \bar{h} have helicity +2 and -2 respectively \rightarrow gravitational d.o.f. identified with $\gamma_{i j}$

- Light-cone Lagrangian (perturbative)

$$
\mathcal{L}=\frac{1}{2} \bar{h} \square h+2 \kappa \bar{h} \partial_{-}^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h\right)+c . c .+ \text { higher order terms }
$$

Light-cone Hamiltonian for gravity

- Conjugate momenta (recall: x^{+}is time)

$$
\begin{gathered}
\mathcal{L}=\bar{h}\left(\partial_{-} \partial_{+}-\partial \bar{\partial}\right) h+2 \kappa \bar{h} \partial_{-}{ }^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}{ }^{2}} h\right)+\cdots \\
\pi=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} h\right)}=-\partial_{-} \bar{h}, \quad \bar{\pi}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} \bar{h}\right)}=-\partial_{-} h
\end{gathered}
$$

$(\pi, \bar{\pi})$ are primary constraints \Rightarrow Half the d.o.f than in the $3+1$ formalism
\rightarrow a feature of all null-front Hamiltonian systems

Light-cone Hamiltonian for gravity

- Conjugate momenta (recall: x^{+}is time)

$$
\begin{gathered}
\mathcal{L}=\bar{h}\left(\partial_{-} \partial_{+}-\partial \bar{\partial}\right) h+2 \kappa \bar{h} \partial_{-}{ }^{2}\left(\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h-h \frac{\bar{\partial}^{2}}{\partial_{-}{ }^{2}} h\right)+\cdots \\
\pi=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} h\right)}=-\partial_{-} \bar{h}, \quad \bar{\pi}=\frac{\delta \mathcal{L}}{\delta\left(\partial_{+} \bar{h}\right)}=-\partial_{-} h
\end{gathered}
$$

$(\pi, \bar{\pi})$ are primary constraints \Rightarrow Half the d.o.f than in the $3+1$ formalism
\rightarrow a feature of all null-front Hamiltonian systems

- Light-cone Hamiltonian for gravity

$$
\mathcal{H}=\partial \bar{h} \bar{\partial} h+2 \kappa \partial_{-}^{2} \bar{h}\left(h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h-\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h\right)+c . c .+\mathcal{O}\left(\kappa^{2}\right)
$$

- Poisson brackets

$$
\begin{gathered}
{[h(x), \pi(y)]=\delta\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y) \Rightarrow[h(x), \bar{h}(y)]=\epsilon\left(x^{-}-y^{-}\right) \delta^{(2)}(x-y),} \\
{[h(x), h(y)]=[\bar{h}(x), \bar{h}(y)]=0 .}
\end{gathered}
$$

Symmetries of light-cone gravity

Notion of symmetry

A canonical transformation $\quad(h, \bar{h}) \quad \xrightarrow{\delta_{X}} \quad(\tilde{h}, \tilde{h})$
which leaves the action invariant

$$
\delta_{X} \mathcal{S}[h, \bar{h}]=0
$$

Transformation laws $=$ P.B. with the generator $G_{X}[h, \bar{h}]$, e.g.

$$
\delta_{X} h=\left\{G_{X}, h\right\}_{P B}
$$

For instance,
Poincaré generators in terms of the fields h and $\bar{h} \quad$ [Bengtsson-Bengtsson-Brink, 1983]

$$
\begin{aligned}
& H=P_{+}=\int d^{3} x \mathcal{H}(h, \bar{h}), \quad P=\int d^{3} x \partial_{-} \bar{h} \partial h, \quad P_{-}=d^{3} x \partial_{-} \bar{h} \partial_{-} h \\
& J=i \int d^{3} x \partial_{-} \bar{h}(x \bar{\partial}-\bar{x} \partial-2) h \\
& J^{-}=\int d^{3} x\left[x \mathcal{H}(h, \bar{h})+\partial_{-} \bar{h}\left(x^{-} \partial-2 \frac{\partial}{\partial_{-}}\right) h+\mathcal{S}\right], \quad \cdots
\end{aligned}
$$

\rightarrow canonical realization of Poincarè algebra in light-cone gravity

Symmetries of light-cone gravity

Notion of symmetry

A canonical transformation $\quad(h, \bar{h}) \quad \xrightarrow{\delta_{X}} \quad(\tilde{h}, \tilde{h})$
which leaves the action invariant

$$
\delta_{X} \mathcal{S}[h, \bar{h}]=0
$$

Transformation laws $=$ P.B. with the generator $G_{X}[h, \bar{h}]$, e.g.

$$
\delta_{X} h=\left\{G_{X}, h\right\}_{P B}
$$

For instance,
Poincaré generators in terms of the fields h and $\bar{h} \quad$ [Bengtsson-Bengtsson-Brink, 1983]

$$
\begin{aligned}
& H=P_{+}=\int d^{3} x \mathcal{H}(h, \bar{h}), \quad P=\int d^{3} x \partial_{-} \bar{h} \partial h, \quad P_{-}=d^{3} x \partial_{-} \bar{h} \partial_{-} h, \\
& J=i \int d^{3} x \partial_{-} \bar{h}(x \bar{\partial}-\bar{x} \partial-2) h, \\
& J^{-}=\int d^{3} x\left[x \mathcal{H}(h, \bar{h})+\partial_{-} \bar{h}\left(x^{-} \partial-2 \frac{\partial}{\partial_{-}}\right) h+\mathcal{S}\right], \quad \cdots
\end{aligned}
$$

\rightarrow canonical realization of Poincarè algebra in light-cone gravity

BMS symmetry from residual gauge invariance

- First gauge condition $g_{--}=0$

$$
\Rightarrow \quad \partial_{-} \xi^{+}=0 \quad \Rightarrow \quad \xi^{+}=f\left(x^{+}, x^{j}\right)
$$

Second gauge condition $g_{-i}=0$ yields

$$
\partial_{-} \xi^{j} g_{i j}+\partial_{i} \xi^{+} g_{+-}=0
$$

Fourth gauge condition fixes x^{+}dependence of $f\left(x^{+}, x^{j}\right)$, etc.

- Residual diffeomorphisms (expressed in x, \bar{x} basis)

$$
\begin{aligned}
\xi^{+} & =f\left(x^{+}, x, \bar{x}\right)=\frac{1}{2} x^{+}(\partial \bar{Y}+\bar{\partial} Y)+T(x, \bar{x}) \\
\xi & =-\partial f x^{-}+\kappa \bar{\partial} f \frac{1}{\partial_{-}} h+Y(x, \bar{x})+\mathcal{O}\left(\kappa^{2}\right), \quad \bar{\xi}=(\xi)^{*} \\
\xi^{-} & =-(\partial \bar{Y}+\bar{\partial} Y) x^{-}+\left(\partial_{+} \xi\right) x+\left(\partial_{+} \bar{\xi}\right) \bar{x}
\end{aligned}
$$

BMS symmetry from residual gauge invariance

- First gauge condition $g_{--}=0$

$$
\Rightarrow \quad \partial_{-} \xi^{+}=0 \quad \Rightarrow \quad \xi^{+}=f\left(x^{+}, x^{j}\right)
$$

Second gauge condition $g_{-i}=0$ yields

$$
\partial_{-} \xi^{j} g_{i j}+\partial_{i} \xi^{+} g_{+-}=0
$$

Fourth gauge condition fixes x^{+}dependence of $f\left(x^{+}, x^{j}\right)$, etc.

- Residual diffeomorphisms (expressed in x, \bar{x} basis)

$$
\begin{aligned}
\xi^{+} & =f\left(x^{+}, x, \bar{x}\right)=\frac{1}{2} x^{+}(\partial \bar{Y}+\bar{\partial} Y)+T(x, \bar{x}) \\
\xi & =-\partial f x^{-}+\kappa \bar{\partial} f \frac{1}{\partial_{-}} h+Y(x, \bar{x})+\mathcal{O}\left(\kappa^{2}\right), \quad \bar{\xi}=(\xi)^{*} \\
\xi^{-} & =-(\partial \bar{Y}+\bar{\partial} Y) x^{-}+\left(\partial_{+} \xi\right) x+\left(\partial_{+} \bar{\xi}\right) \bar{x}
\end{aligned}
$$

- Is this a symmetry of the light-cone action? Yes,

$$
\delta_{\xi} \mathcal{S}[h, \bar{h}]=0 \quad \text { iff } \quad \partial^{2} Y=0=\bar{\partial}^{2} \bar{Y}
$$

Y, \bar{Y} at most linear in $x, \bar{x} \rightarrow$ only Lorentz rotations, no superrotations :(
Poincaré symmetry enhanced by one arbitrary constant: $T(x, \bar{x})$

BMS algebra in light-cone gravity

- Transformation law (on $x^{+}=0$ surface),

$$
\begin{aligned}
\delta_{Y, \bar{Y}, T} h= & Y(x) \bar{\partial} h+\bar{Y}(\bar{x}) \partial h+(\partial \bar{Y}-\bar{\partial} Y) h+T \frac{\partial \bar{\partial}}{\partial_{-}} h-\partial T \frac{\bar{\partial}}{\partial_{-}} h-\bar{\partial} T \frac{\partial}{\partial_{-}} h \\
& -2 \kappa T \partial_{-}\left(h \frac{\bar{\partial}^{2}}{\partial_{-}^{2}} h-\frac{\bar{\partial}}{\partial_{-}} h \frac{\bar{\partial}}{\partial_{-}} h\right) \\
& -2 \kappa T \frac{\partial^{2}}{\partial_{-}^{3}}\left(\bar{h} \partial_{-}^{2} h\right)+4 \kappa T \frac{\partial}{\partial_{-}^{2}}\left(\frac{\partial}{\partial_{-}} \bar{h} \partial_{-}^{2} h\right)+\mathcal{O}\left(\kappa^{2}\right)
\end{aligned}
$$

- BMS algebra in the phase space of (h, \bar{h})

$$
\left[\delta\left(Y_{1}, \bar{Y}_{1}, T_{1}\right), \delta\left(Y_{2}, \bar{Y}_{2}, T_{2}\right)\right] h=\delta\left(Y_{12}, \bar{Y}_{12}, T_{12}\right) h
$$

with parameters

$$
\begin{aligned}
Y_{12} & \equiv Y_{2} \bar{\partial} Y_{1}-Y_{1} \bar{\partial} Y_{2} \\
\bar{Y}_{12} & \equiv \bar{Y}_{2} \partial \bar{Y}_{1}-\bar{Y}_{1} \partial \bar{Y}_{2} \\
T_{12} & \equiv\left[Y_{2} \bar{\partial} T_{1}+\bar{Y}_{2} \partial T_{1}+\frac{1}{2} T_{2}\left(\bar{\partial} Y_{1}+\partial \bar{Y}_{1}\right)\right]-(1 \leftrightarrow 2)
\end{aligned}
$$

- Canonical generator for supertranslations

$$
\begin{gathered}
G_{T}=\int d^{3} x \partial_{-} \bar{h}\left(\delta_{T} h\right)=\int d^{3} x \partial_{-} \bar{h}\left\{T \frac{\partial \bar{\partial}}{\partial_{-}} h-\partial T \frac{\bar{\partial}}{\partial_{-}} h-\bar{\partial} T \frac{\partial}{\partial_{-}} h\right\}+\mathcal{O}(\kappa), \\
\delta_{T} h=\left[G_{T}, h\right], \quad \delta_{T} \bar{h}=\left[G_{T}, \bar{h}\right] .
\end{gathered}
$$

Light-cone representation of the BMS algebra

- Light-cone Poincaré algebra

$$
\begin{aligned}
\mathbb{K}: & \left\{P, \bar{P}, P^{+}, J, J^{+}, \bar{J}^{+}, J^{+-}\right\} \\
\mathbb{D}: & \left\{P^{-} \equiv H, J^{-}, \overline{J^{-}}\right\} \\
{[\mathbb{K}, \mathbb{K}]=\mathbb{K}, } & {[\mathbb{K}, \mathbb{D}]=\mathbb{D}, \quad[\mathbb{D}, \mathbb{D}]=0 . }
\end{aligned}
$$

- Light-cone BMS algebra

$$
\begin{aligned}
\mathbb{K} & \rightarrow \mathbb{K}, \\
\mathbb{D} & \rightarrow \mathbb{D}(T), \\
{[\mathbb{K}, \mathbb{K}]=\mathbb{K}, \quad[\mathbb{K}, \mathbb{D}(T)] } & =\mathbb{D}(T), \quad[\mathbb{D}(T), \mathbb{D}(T)]=0 .
\end{aligned}
$$

Dynamical part enhanced to infinite-dim supertranslations labeled by a single parameter

$$
T(x, \bar{x})=\sum_{m, n=0}^{\infty} c_{m, n} x^{m} \bar{x}^{n}=c_{0,0}+c_{1,0} x+c_{0,1} \bar{x}+\ldots
$$

- Poincaré part of the BMS

$$
\partial^{2} T=\bar{\partial}^{2} T=0
$$

$\Rightarrow \mathbb{D}(T)$ reduces to $\mathbb{D}:\left\{H, J^{-}, \bar{J}^{-}\right\} \quad \rightarrow \quad$ the three "Hamiltonians" of Dirac

Light-cone BMS versus BMS at spatial infinity

BMS in front form

- Light-cone Poincaré algebra

$$
\begin{array}{ll}
\mathbb{K}: & \left\{P, \bar{P}, P^{+}, J^{12}, J^{+}, \bar{J}^{+}, J^{+-}\right\} \\
\mathbb{D}: & \left\{P^{-} \equiv H, J^{-}, \bar{J}^{-}\right\}
\end{array}
$$

$[\mathbb{K}, \mathbb{K}]=\mathbb{K},[\mathbb{K}, \mathbb{D}]=\mathbb{D},[\mathbb{D}, \mathbb{D}]=0$

- Going from Poincaré to BMS

$$
\begin{gathered}
\mathbb{K} \rightarrow \mathbb{K}, \quad \mathbb{D} \rightarrow \mathbb{D}(T), \\
{[\mathbb{D}(T), \mathbb{D}(T)]=0}
\end{gathered}
$$

labelled by

$$
T(x, \bar{x})=c_{0,0}+c_{1,0} x+c_{0,1} \bar{x}+\ldots
$$

- Poincaré subgroup

$$
\partial^{2} T=\bar{\partial}^{2} T=0
$$

$\mathbb{D}(T) \rightarrow\left\{H, J^{-}, \bar{J}^{-}\right\}$
$\rightarrow 3$ "Hamiltonians" of Dirac's front form

BMS in Instant form

- Poincaré algebra
in spherical coordinates : $x^{\mu}=(t, r, \theta, \varphi)$
$\left\{\right.$ Lorentz $M^{\mu \nu}$, Translations $\left.P^{\mu}\right\}$
$[M, M]=M,[P, M]=P,[P, P]=0$
- Going from Poincaré to BMS

$$
\begin{gathered}
M^{\mu \nu} \rightarrow M^{\mu \nu}, \quad P^{\mu} \rightarrow \mathcal{S T} \\
{[\mathcal{S T}, \mathcal{S T}]=0}
\end{gathered}
$$

labelled by

$$
\mathcal{T}(\theta, \varphi)=a_{0,0} Y_{0,0}+\sum_{m=-1}^{1} a_{1, m} \underbrace{Y_{1, m}}_{\text {spherical harmonics }}+\ldots
$$

- Poincaré subgroup

$$
\partial_{A} \mathcal{T}(\theta, \varphi)=0, \quad x^{A}=\{\theta, \varphi\}
$$

$\mathcal{S T} \rightarrow\left\{P^{0}, P^{r}, P^{\theta}, P^{\varphi}\right\}:$ Abelian ideal

Summary: Does $(3+1)$ equal $(2+2)$?

$(3+1)$: Asymptotic symmetries at spatial infinity

- Symmetry \equiv invariance of symplectic form or Hamiltonian action
- Boundary value problem on a Cauchy hypersurface
- Integrability of boost charges is a subtle issue
- Spin 1: Must include a surface dof $\bar{\Psi}$ to obtain full $U(1)$ gauge symmetries

Setting $\bar{\Psi}$ to zero amounts to improper gauge fixing

- Spin 2: Supertranslations obtained without any extra surface degrees of freedom
- Superrotations could not be canonically realized (for asymptotically flat BCs)
$(2+2)$: Residual gauge symmetries in light-cone formulation
- Symmetry \equiv invariance of light-cone action
- Characteristic initial value problem on a null hypersurface
- Integrability of boost charges is a subtle issue
- Spin 1: Must include a zero mode α to obtain all residual gauge symmetries

Setting α to zero amounts to residual gauge fixing

- Spin 2: Supertranslations obtained without introducing any zero modes
- Superrotations could not be canonically realized (on Mink background)

Some concluding remarks...

How to connect to null infinity?

- Celestial and Carrollian holography, scattering amplitudes, ...
- Superrotations, Diff $\left(\mathbb{S}^{2}\right)$ and other extensions:

Do we need to extend the phase space?
Why do we need boundary d.o.f. in some cases, such as spin 1 and spin $3 / 2$?

- Decoupling of gauge algebra ('pure supertranslations') from Poincaré using supertranslation-inv Lorentz charges \rightarrow Can we see this at \mathcal{I}^{+}or in the front form?
[Oscar Fuentealba, Marc Henneaux,and Cédric Troessaert]

Some concluding remarks...

How to connect to null infinity?

- Celestial and Carrollian holography, scattering amplitudes, ...
- Superrotations, Diff $\left(\mathbb{S}^{2}\right)$ and other extensions:

Do we need to extend the phase space?
Why do we need boundary d.o.f. in some cases, such as spin 1 and spin $3 / 2$?

- Decoupling of gauge algebra ('pure supertranslations') from Poincaré using supertranslation-inv Lorentz charges \rightarrow Can we see this at \mathcal{I}^{+}or in the front form?
[Oscar Fuentealba, Marc Henneaux, and Cédric Troessaert]

Connections with amplitudes, (Anti) self-dual and all that

- Light-cone action in a basis of helicity states - well suited for on-shell physics
- Various applications- MHV Lagrangians, KLT relations, Double copy methods
[Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]
- Double copy construction for SD sectors [Campiglia-Nagy '21]
- Double copy for BMS symmetries, Newmann-Penrose formalism, Weyl double copy, ...

Some concluding remarks...

How to connect to null infinity?

- Celestial and Carrollian holography, scattering amplitudes, ...
- Superrotations, Diff $\left(\mathbb{S}^{2}\right)$ and other extensions:

Do we need to extend the phase space?
Why do we need boundary d.o.f. in some cases, such as spin 1 and spin $3 / 2$?

- Decoupling of gauge algebra ('pure supertranslations') from Poincaré using supertranslation-inv Lorentz charges \rightarrow Can we see this at \mathcal{I}^{+}or in the front form?
[Oscar Fuentealba, Marc Henneaux, and Cédric Troessaert]

Connections with amplitudes, (Anti) self-dual and all that

- Light-cone action in a basis of helicity states - well suited for on-shell physics
- Various applications- MHV Lagrangians, KLT relations, Double copy methods
[Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]
- Double copy construction for SD sectors [Campiglia-Nagy '21]
- Double copy for BMS symmetries, Newmann-Penrose formalism, Weyl double copy, ...

Formal aspects of null-front Hamiltonian analysis

- Role of boundary degrees of freedom, zero modes, etc.
- Dictionary between residual gauge symmetries in $(2+2)$ with asymptotic symmetries at \mathcal{I}^{+}and i^{0}
- Comparison with the initial value problem in the instant form, Equivalent of Cauchy hypersurfaces in the front form?

[Nagarajan-Goldberg '85]

Formal aspects of null-front Hamiltonian analysis

- Role of boundary degrees of freedom, zero modes, etc.
- Dictionary between residual gauge symmetries in $(2+2)$ with asymptotic symmetries at \mathcal{I}^{+}and i^{0}
- Comparison with the initial value problem in the instant form, Equivalent of Cauchy hypersurfaces in the front form?

[Nagarajan-Goldberg '85]

Parity conditions at $i^{0} \longleftrightarrow$ Antimopal map at $\mathcal{I}^{+} \longleftrightarrow$ Null matching conditions in Front form

"I feel that there will always be something missing from them [non-Hamiltonian methods], which we can only get by working from a Hamiltonian"
-P.A.M. Dirac,
Lectures on Quantum Mechanics (1964)

THANK YOU!

APPENDIX

Light-cone Poincaré algebra in $d=4$

- Non-vanishing commutators of the Poincaré algebra

$$
\begin{array}{rlr}
J^{+}= & \frac{J^{+1}+i J^{+2}}{\sqrt{2}}, \quad \bar{J}^{+}=\frac{J^{+1}-i J^{+2}}{\sqrt{2}}, \quad J=J^{12}, & H=P_{+}=-P^{-} . \\
{\left[H, J^{+-}\right]=-i H,} & {\left[H, J^{+}\right]=-i P,} & {\left[H, \bar{J}^{+}\right]=-i \bar{P}} \\
{\left[P^{+}, J^{+-}\right]=i P^{+},} & {\left[P^{+}, J^{-}\right]=-i P,} & {\left[P^{+}, J^{-}\right]=-i \bar{P}} \\
{\left[P, \bar{J}^{-}\right]=-i H,} & {\left[P, \bar{J}^{+}\right]=-i P^{+},} & {[P, J]=P}
\end{array}
$$

... and many more

- Underlying Carrollian algebra

Rotation $\mathbb{J}=\left\{\boldsymbol{J}^{12}, \boldsymbol{J}^{+-}, \boldsymbol{J}^{+}, \bar{J}^{+}\right\}$, Boosts $\mathbb{K}=\left\{J^{-}, \bar{J}^{-}\right\}$
Translations $\mathbb{P}=\left\{P, \bar{P}, P_{-}\right\}$, Hamiltonian $\mathbb{H}=P_{+}$

$$
\begin{array}{lll}
{[\mathbb{J}, \mathbb{J}]=\mathbb{J},} & {[\mathbb{J}, \mathbb{P}]=\mathbb{P},} & {[\mathbb{J}, \mathbb{K}]=\mathbb{K}} \\
{[\mathbb{J}, \mathbb{H}]=0,} & {[\mathbb{H}, \mathbb{P}]=0,} & {[\mathbb{H}, \mathbb{K}]=0} \\
{[\mathbb{P}, \mathbb{P}]=0,} & {[\mathbb{K}, \mathbb{K}]=0,} & {[\mathbb{P}, \mathbb{K}]=\mathbb{H}}
\end{array}
$$

- In terms of the Kinematical-Dynamical split

$$
\begin{aligned}
& \mathbb{K}=\left\{P_{i}, P_{-}, M_{i j}, M_{-i}, M_{+-}\right\}, \quad \mathbb{D}=\left\{P_{+}, M_{i+}\right\} \\
& {[\mathbb{K}, \mathbb{K}]=\mathbb{K}, \quad[\mathbb{K}, \mathbb{D}]=\mathbb{D}, \quad[\mathbb{D}, \mathbb{D}]=0}
\end{aligned}
$$

Decoupling of gauge algebra from Poincaré at i^{0}

Recent developments in the asymptotic symmetry analysis at spatial infinity
[Oscar Fuentealba, Marc Henneaux,and Cédric Troessaert]

- Spin 1: Large gauge transformations

$$
A_{\mu}=\partial_{\mu} \epsilon, \quad \epsilon \sim a(\theta, \varphi) r+b(\theta, \varphi) / n r+c(\theta, \varphi)+\ldots
$$

Asymptotic algebra

$$
\begin{array}{r}
{\left[G_{\text {Poincaré }}, G_{\text {Poincaré }}\right]=G_{\text {Poincaré }}, \quad\left[G_{\text {Gauge }}, G_{\text {Poincaré }}\right]=G_{\text {Gauge }}, \quad\left[G_{\text {Gauge }}, G_{\text {Gauge }}\right]=0,} \\
\downarrow \\
{\left[G_{\text {Gauge }}, G_{\text {Gauge }}\right]=\mathrm{C},}
\end{array}
$$

Central charge C allows a definition of 'gauge-invariant' Lorentz generators such that

$$
\left[G_{\text {Poincaré }}, G_{\text {Poincaré }}\right]=G_{\text {Poincaré }}, \quad\left[G_{G a u g e}, G_{\text {Poincaré }}\right]=0
$$

\rightarrow Gauge algebra completely decoupled form Poincaré
[arXiv: 2301.05989]

- Further extended to spin-2: $B M S_{4}, B M S_{5}$, super- $B M S_{4}$ etc.
[arXiv: 2211.10941 and arXiv:2305.05436]
- Can we find similar decoupling at \mathcal{I}^{+}or in the front form? Does this happen only at i^{0} ?

[^0]: ${ }^{1}$ split of four dimensional spacetime into 2 null +2 transverse spatial coordinates

[^1]: ${ }^{2}$ Inverse derivative defined as

 $$
 f\left(x^{-}\right)=\frac{1}{\partial_{-}} g\left(x^{-}\right)=-\int \epsilon\left(x^{-}-y^{-}\right) g\left(y^{-}\right) d y^{-}+\text {" constant } "
 $$

