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Asymptotic symmetry analysis: the ‘usual’ way

BMS at Z*: Bondi Approach [Bondi-van der Burg-Metzner-Sachs, 1962]
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Asymptotic symmetry analysis: the ‘usual’ way

BMS at Z*: Bondi Approach [Bondi-van der Burg-Metzner-Sachs, 1962]
BMS group as the symmetry of gravity at null infinity for asymptotically flat spacetimes

@ Use Bondi coordinates (u, r, x#), Bondi gauge and impose boundary conditions as r — oo

ds?® = &8 %du2 — 26 dudr + gag(dx? — UAdu) (dxB — UBdu)

@ Look for diffeomorphisms that preserve the form of the metric

Poincaré in the bulk: £#(x) = wl x¥ + a*

(6-dim Lorentz w! ) + (4 translations a#) : 10 dim

Poincaré = Lorentz x Translations

1

BMS at Z": a* replaced by a function a : co-dim

Porru carE
bugi. ghocekime

BMS, = Lorentz x “Supertranslations”

o Define Noether charges and compute the asymptotic algebra
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All roads lead to BMS?

Bondi approach: [since 1960s]
@ BMS as the asymptotic symmetry group at null infinity
@ Further extensions to superrotations, Diff(S?), Celestial Holography, W. . algebras
@ Links to soft theorems, Ward identities and memory effects, Strominger’s IR triangle, ...

[Bondi-van der Burg-Metzner-Sachs '62, Barnich-Troessaert, Hawking-Perry-Strominger Compére, Campiglia,
Detournay, Donnay, Freidel, Geiller, Grumiller, Laddha, Pasterski, Puhm, Raclariu, Sen, Sheikh-Jabbari, Zwikel
and many more]



N
All roads lead to BMS?

Bondi approach: [since 1960s]
@ BMS as the asymptotic symmetry group at null infinity
@ Further extensions to superrotations, Diff(S?), Celestial Holography, W. . algebras
@ Links to soft theorems, Ward identities and memory effects, Strominger’s IR triangle, ...

[Bondi-van der Burg-Metzner-Sachs '62, Barnich-Troessaert, Hawking-Perry-Strominger Compére, Campiglia,
Detournay, Donnay, Freidel, Geiller, Grumiller, Laddha, Pasterski, Puhm, Raclariu, Sen, Sheikh-Jabbari, Zwikel
and many more]

Conformal Carroll approach: [since 2014]
@ BMS group as conformal Carroll group
@ Further extensions to other Carrollian structures
@ Symmetries of null hypersurfaces, Carrollian field theory, Carrollian fluids

[Duval-Gibbons-Hovarthy 14, Campoleoni, Ciambelli, Donnay, Fiorucci, Freidel, Flanagan, Heffray, Leigh,
Obers, Petropoulos, Ruzziconi and many more]

Hamiltonian approach: [since 2017]

@ BMS symmetry at spatial infinity from the ADM Hamiltonian action

@ Canonical realization of BMS in the ADM phase space

@ Relevant for Initial value problem of GR on Cauchy/ Characteristics hypersurfaces, etc.
[Henneaux-Troessaert 17, Fuentealba, Guilini, SM, Matulich, Neogi, Riello, Tanzi, ...]



Two lessons from Dirac

Lesson I: Forms of relativistic dynamics [Dirac 1959]

Three choices of “time” for describing Hamiltonian dynamics of relativistic systems

Instant form: Front form: : Point form:
xt = (x%+x3)/v2 T = proper time
“Cl

Spacelike foliations Null foliations Hyperbolic foliations

Poincaré algbera splits into

— Kinematical generators K that are “simple”
— Dynamical generators or “Hamiltonians” D that involve time derivatives



Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Gauge theories are constrained Hamiltonian systems
SH[¢,W¢, )\,‘] = /dt/dsx <7T¢(1'5 —H - /\,'gi)

G' — gauge cosntraints, \; — Largrange multipliers

@ algorithm for classifying gauge constraints (primary, first-class, ...)
@ symmetries generated by first-class constraints
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Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Gauge theories are constrained Hamiltonian systems
SH[¢,W¢, )\,‘] = /dt/d3x <7T¢(1'5 —H - /\,'gi)

G' — gauge cosntraints, \; — Largrange multipliers

@ algorithm for classifying gauge constraints (primary, first-class, ...)
@ symmetries generated by first-class constraints

The usual route: Instant form + Constrained Hamiltonian systems

Many successes: BRST quantization, Duality-invariant actions, Asymptotic symmetries at i°, . ..

An alternative route: Front form + Constrained Hamiltonian systems
@ Gauge constraint in the front form are often solvable
@ Provides a Hamiltonian framework for symmetries of null hypersurfaces

@ Many successes: Discrete light-cone quantization (DLCQ), Light-cone quantization of strings,

UV finiteness of N' = 4 SYM, Higher-spin cubic action, etc.
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BMS symmetry at a glance

BMS symmetry in gravity}

Bondi
Approach

Hamiltonian
Approach

Carroll
Approach

[Constrained Hamiltonian}

Systems
Dirac’s Dirac’s
Instant form Front form

BMS-like symmetries (infinite-dimensional extension of Poincaré) using Hamiltonian methods

Focus of this talk:

S—




BMS in Hamiltonian formulations: (3+1) and (2+2)"

Part 1: Instant form
(3+1): Hamiltonian dynamics on a spatial hypersurface
— BMS symmetry from ADM action

Work done with Oscar Feuntealba, Marc Henneaux,
Javier Matulich and Cedric Troessaert

[ArXiv:1904.04495 and ArXiv:2007.12721]

Part 2: Front form

(2+2): Hamiltonian dynamics on a null hypersurface
— BMS symmetry from light-cone action

Work done with Sudarshan Ananth and Lars Brink

[ArXiv:2012.07880 and ArXiv:2101.00019]

1s.plit of four dimensional spacetime into 2 null + 2 transverse spatial coordinates



Hamiltonian formulation of GR a la Dirac and ADM

@ 3+1 foliation of spacetime by a family of spacelike surfaces X;

o ADM decomposition:  (ggg = —N2 + N'N;, Bgg = N;, Hg; =g
Zovie Dynamical variables:
? gjj = metric on ¢
7l = conjugate momenta

ADM action for gravity [Dirac '58, Arnowitt-Deser-Misner '62]

Saomlgy, ™, N,N'] = /dt{/dax(w’/g,] NH — N'H

Boundary terms B, ensure a good variational principle [Regge-Teitelboim '74]

) fo




Hamiltonian formulation of GR a la Dirac and ADM

ADM action for gravity [Dirac '58, Arnowitt-Deser-Misner '62]

Saomlgy, 7, N,N'T = [ dt{ [ Bx(nTg; — NH — N'H B}
Iy ]

@ Lagrange multipliers, N and N’ implement the constraints

H = —\/aR“r ﬁ(ﬂ'ljﬂ','/‘—gﬂ'z), H,‘ = —2V]7TJI

Constraints generate gauge symmetries

@ Symplectic form

Q= /dsx dv7r’7 Adyg;, dy = exterior derivative in field space

Phase space : {gj, 7}

Poisson bracket: {g;(x), 7¥(x")} = 68‘5;))5(3)@ —x)



Symmetries of the ADM action

Symmetries = Strict invariance of the symplectic form

Q = /dSX d\/ﬂ'ij/\d\/g,'j7

£ generates a canonical transformation if

ZZEQ = dv(L,gQ) =0 = LEQ = *dng

G¢ is the generator associated with this canonical transformation.

@ Diffeomorphisms:
2¢ 1
0egy = Vi (Wi/ - *@jﬂ) + LeGi
6§7rij = —£J/g <Hij ”Fl') + §f (‘nmnﬂm" — 1§7T2>
im 1 i iglm i
72§f< / _ 5#’71) +\/§(§I/ 7915\ Im) +£§ﬂ./
@ Canonical generator for all symmetries
G{,gf = /dSX (f’H-ﬁ-fi’H,’) + Q&g/‘ ,



@ Canonical generator for all symmetries
Geo = /dsx (M + ) + Qe e,
a) Gauge symmetry: O&E,‘ =0
Proper gauge transformations do not affect the physical states
b) True symmetry: Q; i # 0

Improper gauge transformations affect the physical states



@ Canonical generator for all symmetries
Geo = /dsx (M + ) + Qe e,
a) Gauge symmetry: Q&E,‘ =0
Proper gauge transformations do not affect the physical states
b) True symmetry: Q; i # 0

Improper gauge transformations affect the physical states

E.g. Poincaré symmetry )
& =bx' + ao,

¢ = wll_xj +4
b’ boosts, wl’f rotations, a° time translation, & spatial translations

Qpoincare 7 0 but no co-dimensional BMS at spatial infinity [Regge-Teitelboim’ 74]

How to recover the BMS group at spatial infinity?
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Hamiltonian action with standard boundary conditions

1

Carefully relax the boundary conditions
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How to ‘see’ BMS symmetry in the ADM formulation?

Hamiltonian action with standard boundary conditions

1

Carefully relax the boundary conditions

1

Ensure finiteness of the ADM action and the symplectic form

1

Check that all Poincaré charges are still canonical

1

Define canonical generators and compute the asymptotic symmetry algebra



Asymptotic conditions |

First ingredient: fall-off conditions

We use spherical coordinates (r, xA) where x* are coordinates on the sphere at i

@ Asymptotically flat spacetimes: metric approaches Minkowski as r — oo

1-
1+fm+ou4y

ar =
ga = Aa+- h(z) o2,
gap = I gAB+thB+hqu+O(f_1).
Barred quantities (e.g., h, 77} are functions on the 2-sphere
@ Conjugate momenta
_ 1 P
= &4+ FW(§)+O(f )s
7_(_I‘A _ 17—rrA + 1 ﬂ_ + O( )
- r (2)
1 1
AB ~AB AB —4
T = &7 +r—37r(2)+(9(r ).



Asymptotic conditions |

First ingredient: fall-off conditions

We use spherical coordinates (r, xA) where x* are coordinates on the sphere at i

@ Asymptotically flat spacetimes: metric approaches Minkowski as r — oo

1-
1+fm+ou4y

ar =
ga = Aa+- h(z) o2,
gap = I gAB+thB+hqu+O(f_1).
Barred quantities (e.g., h, 77} are functions on the 2-sphere
@ Conjugate momenta
_ 1 P
o= w4 omp +O0(r),
7_(_I‘A _ 17—rrA + 1 ﬂ_ + O( )
- r (2)
1 1
AB ~AB AB —4
T = &7 +r—37r(2)+(9(r ).

This part is the same as that of Regge-Teitelboim



Asymptotic conditions Il

Second ingredient: parity conditions on leading terms

“Gauge-twisted” parity conditions: [Henneaux-Troessaert '18]

Parity: (r,0,¢) — (r,m — 0, ¢ + 2m)

77rr = even, 2
X = () +Daér —Cas
hag = (hag)®®" + Dalp + DpCa + 2Ga5¢r

L — (ﬁrr)odd _ \/EIV,

—rA —rAyeven ==A

= — D'V
T ) \/gi ’ Recall:
8 = (O GOV - PRY),

?{ (odd function) = 0 on the sphere

With these parity conditions, Hamiltonian action and symplectic form are finite as r — oo

Generalization of Regge-Teitelboim strict parity conditions



Asymptotic conditions IlI

@ Third ingredient: stronger fall-off of the constraints
H o~ O3,  H ~ O3

to remove divergent conributions to Poincaré charges

@ Fourth ingredient: Involves the mixed radial-angular component, h,a — more on this later

@ Fall-off of the Poincaré (¢, ¢'):

&€ = br+d,
5( = Wi,
EA = YA + 1?DAw1 )

YA rotations, b boosts, &° time translations, wy spatial translations



Asymptotic conditions IlI

@ Third ingredient: stronger fall-off of the constraints
H o~ O3,  H ~ O3

to remove divergent conributions to Poincaré charges

@ Fourth ingredient: Involves the mixed radial-angular component, h,a — more on this later

@ Fall-off of the Poincaré (¢, ¢'):

&€ = br+d,
5’ = Wi,
EA = YA + 1?DAw1 )

YA rotations, b boosts, &° time translations, wy spatial translations

Next step: Check if Poincaré generators are still canonical



Canonical realization of Poincare generators

Strict invariance of the symplectic form

Q = /dSX dv7rij A dVg,-,- s

£ generates a canonical transformation if

[:59 = dv(LgQ) =0 = LgQ = 7d\/G§

G¢ is the generator associated with this canonical transformation.

@ Under Lorentz rotations Y# and spacetime translations (a°, &),

Liya 0 qy2=0 = GCanonical generators well-defined

@ Under Lorentz boosts b (in spherical coordinates)
= - (= = A
dv(bQ) = - / d@dcp\/é{bdvhdv(hn—i—DA)\ )
_BAdexAdvﬁ-I— bBAdedeﬁAB>:| # 0

How to make the symplectic form invariant under boosts?



Non-integrability of the boost generators: Resolution

@ Perform a gauge transformation

epy = bF, Fisfield-dependent

dy (162) + dv (te(p))

- / dodyr/g [2b (dVF + %dvﬁ) dy (Fm + DA:\A)

—DAb dV;\Advﬁ + bDAdV;\del_?AB

1
SetF = —h
© 2




Non-integrability of the boost generators: Resolution

@ Perform a gauge transformation

epy = bF, Fisfield-dependent

dy (162) + dv (te(p))

- / dodyr/g [2b (dVF + %dvﬁ) dy (f‘m + DA:\A)

—DAb dV;\Advﬁ + bDAdV;\del_?AB

1_
SetF = — —h
2

@ Fourth ingredient of asymptotic conditions (Recall: h,s = Aa+ O(r~1))
/ dé)d@\/ﬁ[ﬁAb dy N dyh — bEAdVXBdVEAB]

Set /_\A =0

dy(tp) =0 = 1pQ=-dyG, — Boosts are canonical again!

No need for an extra boundary field in order to define canonical generators: more on this later



Finally, the new boundary conditions read

gr = 1 _;_1?/"1r,_~_“_7 ol = 7‘r”+177r('£)+...,
gas = rPOug+rhag+hZ+ ... B = :—27‘#‘34— :—Sw(‘_‘gf)*+....
With gauge-twisted parity conditions
hr = even,
M= ()% +Da¢r—Ca=0 = (4=Dagr=DaU,
has = (hag)®®" +2(DaDsU + gagV)

o La— (Err)odd _ \/ﬁiAV,
ﬁrA — (ﬁrA)eveni \/‘(_JTDAV

= @)%+ /g(D'D’V - gAY,

Regge-Teitelboim parity conditions relaxed with two functions: U odd and V even



Are there more symmetries?

Yes, diffeos x* — x* + e (x) with parameters
£(0,6) = T, ((6,¢) = W°™ —  one single arbitrary function | 7(6, ¢)

@ Time component of gauge parameter
=T =To+ o+ Ta+To+
@ Spatial components

d=e+o(r "), @=D(w),

1—
W= W=W,+Ws+Ws+ W+, WA:7DAW,



Are there more symmetries?

Yes, diffeos x* — x* + e (x) with parameters
£(0,6) = T, ((6,¢) = W°™ —  one single arbitrary function | 7(6, ¢)

@ Time component of gauge parameter
S=TN =To+ o+ Ta+To 4
@ Spatial components
d=ed+00r "), &=D(w),

1—
W= W=W,+Ws+Ws+ W+, WA:7DAW,

@ Where are the spacetime translations? Expand T (6, ¢) in spherical harmonics

1 2
1
T(9,¢) - To,oyo,o + Z W1,mY1,m + Z Z T2,mY2,m + .-

m=—1 m=—2

time spatial supertranslations
translations &° translations &

[Henneaux-Troessaert 2018; Henneaux-Fuentealba-SM-Matulich-Troessaert 2020]
19



Asymptotic symmetries at spatial infinity
@ Canonical generator for BMS

Geo = /dsx (1 +€71) + Qe

Q; ¢i /d@dcp{

+24/9T hy +2W (7" — ﬁ;‘)}
~~ —_———

even odd

1- _
V(- hh,,+ 4h - ZhABhf‘E’)Jr %ﬁ;‘w"‘ +2Y,7"Bh}

(Toad> Weven) — proper gauge transformations

(Teven, Woqg) — improper gauge transformations : Supertranslations

@ Poisson bracket algebra

{qu ; Gsz,s;} = Geeis

Asymptotic symmetry algebra of gravity at spatial infinity

BMS, = SO(3, 1) x supertranslations

20



Asymptotic symmetry algebra

@ Poisson bracket algebra

{651,54 ) G&z,sg} = Ygg
with the parameters
VA = YPogY) +7biogb, — (1 < 2),
YBogby — (1 ¢+ 2),
= YPouT, — 3biWo — 94t D" — 2W — by DD Ws — (1 5 2),
YRoaWe — by T — (1 < 2)

o
Il

T -
Il

@ BMS as the infinite-dimensional enhancement of Poincaré, Gg’g,- = Grorentz + GT,w

21



Asymptotic symmetry algebra

@ Poisson bracket algebra

{Ga,sq"Gsz,sg} =Yg éi
with the parameters
V4 = YPosYy +7%bisb, — (1 0 2),

b = YPogh,— (14 2),
T = YP0uTo — 3biWa — 9451 D" — 2W — by D4D Ws — (1 5 2)
W = YlouWo—biTo— (1 2)

@ BMS as the infinite-dimensional enhancement of Poincaré, Gg’g,- = Grorentz + GT,w

{GLorentZ7 GLorentz } = C7\Lorentz {GLorentm GLorentz } = GLorentz
{GLorentp Goaip = G(éyé/) G, — Grw {GLorentz, GT,W} = G?’,VAV
{Ga,a’7 Ga,a’ =0 {GT,W7 GT,W } =0

[Henneaux-Troessaert 2018; Henneaux-Fuentealba-SM-Matulich-Troessaert 2020]
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BMS in Hamiltonian formulations: (3+1) and (2+2)

Part 1: Instant form
(3+1): Hamiltonian dynamics on a spatial hypersurface
—  BMS symmetry from ADM action

Work done with Oscar Feuntealba, Marc Henneaux,
Javier Matulich and Cedric Troessaert

[ArXiv:1904.04495 and ArXiv:2007.12721]

Part 2: Front form

(2+2): Hamiltonian dynamics on a null hypersurface
— BMS symmetry from light-cone action

Work done with Sudarshan Ananth and Lars Brink

[ArXiv:2012.07880 and ArXiv:2101.00019]
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Poincaré algebra in Dirac’s front form

@ Light-cone coordinates

x0 + x3 x0 — x3 .
xt = , X = , X (i=1,2
V2 V2 ( )
x*  Light-cone time = Py =i0L = —P~ Hamiltonian

@ The three “Hamiltonians” in the front form
Poincaré generators in the instant form: (P,,, M,..)
[P,PI~0, [P.M~P, [MM~M

(Po, Mp;) — four dynamical generators or “Hamiltonians”

Poincaré generators in front form
Kinematical K = {P/, PT,Mi Mt/ Mt—}, (i=1,2)
Dynamical D = {P~, M~ = J~,J~ } — three “Hamiltonians” in the front form
N —
2 boosts
[K,K] =K, [K,D]=D, [D,D]=0

Poincaré algebra in front form has a Carrollian structure — isometry of null hypersurfaces

23



Null-front Hamiltonian formulation of gravity

“Forms of relativistic dynamics” [Dirac '49] — Use a null time parameter to study dynamics

24



Null-front Hamiltonian formulation of gravity

“Forms of relativistic dynamics” [Dirac '49] — Use a null time parameter to study dynamics
“On the characteristic initial value problem in gravitational theory” [R. K. Sachs '62]

“Covariant 2+2 formulation of the initial-value problem in general relativity”
[d’Inverno and Smallwood '79] [Gambini-Restuccia, C. Torre, M. Kaku,...]

@ Spacelike foliation of codim 2 (instead of 1)
@ Unconstrained Hamiltonian systems: constraint equations often become solvable
@ Gravitational d.o.f. identified with the “conformal two-metric”

24



Null-front Hamiltonian formulation of gravity

“Forms of relativistic dynamics” [Dirac '49] — Use a null time parameter to study dynamics
“On the characteristic initial value problem in gravitational theory” [R. K. Sachs '62]

“Covariant 2+2 formulation of the initial-value problem in general relativity”
[d’Inverno and Smallwood '79] [Gambini-Restuccia, C. Torre, M. Kaku,...]

@ Spacelike foliation of codim 2 (instead of 1)
@ Unconstrained Hamiltonian systems: constraint equations often become solvable
@ Gravitational d.o.f. identified with the “conformal two-metric”

Our focus:

@ Set up a particular example of the 2+2 formulation: /c, gravity [Scherk-Schwarz’ 75]
@ Study the BMS symmetry from residual gauge invariance

24



|
Gravity in the light-cone gauge

“Ic, formalism” [Scherk-Schwarz, Schwarz-Goroff, Bengtsson-Cederwall-Lindgren]
@ Light-cone gauge: Set the “minus” components to zero

Parametrization
g+— = —e¢, g’l = ew%j
$,b,vyj are real and det v; = 1

Light-cone metric

dSZ, = gudxtax¥ = —2ePdxtaxt + gi(dxt)? + gidxtax + ev yax dx

given in terms of 7 functions {¢, v, vj, g++, 9+i}

@ “2+2” split of the Einstein field equations R,,,, = 0 [Sachs, d’Inverno-Smallwood, ...]
Dynamical equations: Rj; = 0
Constraint equations: R—-_ =R_; =0
Subsidiary equations: Ry = R.; =0
Trivial equations: R =0

25



Gravity in the light-cone gauge

Can we solve the constraint equations? Subject to choice of coordinates, gauge conditions, etc.

@ Constraint equation R—_ = 0
1 .
20_¢0_1p — (0_1p)? — 20_2¢ + 584'/ d_vj = 0.
Fourth gauge choice : [Scherk-Schwarz]
_Y _
o=%
allows us to integrate 2 out
1 1 " "
L (g ~ig_Ad
4 a_2( v )
@ The constraint R_; = 0 eliminates g, ;
@ R_, = 0 allows us to eliminates g+

2Inverse derivative defined as

P =

f(x—) = aig(x_) =— / e(x™ —y )gly )dy  + “constant”

Integration constants set to zero for asymptotically Minkowski spacetimes

26



Light-cone action for gravity

@ Closed form expression
1 v i1 1
STy —Ri—R,

1 : o 1
Syl = Q/d“x e¥ (2 8.0_¢ + 0,0 v — Edw’/a,q,-,) -5 5 A
b i 1 LN 1w
—e"y" ( 06 + 5@455/(25 — ;0 — ZQW v + EQW i

where

1 j
A = ¥ (o- 0 — 0-016 — 0_ 0 + 960_b ) + (¥ Fo_y)



Light-cone action for gravity

@ Closed form expression

1 ) 1 . 1 4 oy i
Syl = ?/d“x e¥ <2a+a,¢ + 0, 0_1p — an’/a,q,-,) - Ee¢ 2 WUJTR’?

1 1

5 i 1 LI L
€% (809 + 50168 — 8idSp — L0y Ojyn + 50 Ok

where

1 . .
A = ¥ (o- 0 — 0-016 — 0_ 0 + 960_b ) + (¥ Fo_y)

@ Perturbative expansion
Yij =

Complexify the fields (and x)
1

H _f b1 hy2
(€5 H_<h12 —h11)

, - 1 .
h = (P11 4+1ih12), h = —(h1 —ihp2)

V2

V2

h and h have helicity +2 and -2 respectively — gravitational d.o.f. identified with Vi

@ Light-cone Lagrangian (perturbative)

c:%hmh+2ﬁﬁa_2

5 5 52
(ghgh — h%h) + c.c. + higher order terms

R,

27



Light-cone Hamiltonian for gravity

@ Conjugate momenta (recall: x* is time)

32
L=h(0_0; —88)h + 2k hd_2 (3 ih—ha—h> oo

a- o- a_2
S— =—0_h, - L o
5(8.h) §(8.h)

(, ) are primary constraints = Half the d.o.f than in the 3+1 formalism

— a feature of all null-front Hamiltonian systems

28



Light-cone Hamiltonian for gravity

@ Conjugate momenta (recall: x* is time)
- = - d ., b2
L=h(0-8; —8d)h + 2 hd_2( -—h—h—h—h
(004~ 00)h + 2xF0-2 (-hlh—nTsh)
oL — o h _ M_ — o h
5(8+h)

(, ) are primary constraints = Half the d.o.f than in the 3+1 formalism
— a feature of all null-front Hamiltonian systems

@ Light-cone Hamiltonian for gravity

H = 0hdh + 2k0%h hih—éhéh +c.c. + O(x?)
B - 92 a_ o "

@ Poisson brackets
[h(x), m(y)] = 8(x~ =y )6@(x —y) = [h(x),h(y)] = e(x™ —y7)sB(x—y),
[h(x),h(y)] = [h(x),h(y)] = 0.

[Scherk-Schwarz’ 75, Bengtsson-Cederwall-Lindgren '83]
28



Symmetries of light-cone gravity

Notion of symmetry

>R

. - 5 -
A canonical transformation  (h,h) =+ (A,
which leaves the action invariant

)
5xS[h, Al =0
Transformation laws = P.B. with the generator Gx[h, h], e.g.

dxh={Gx,h}ps

For instance,
Poincaré generators in terms of the fields hand h  [Bengtsson-Bengtsson-Brink, 1983]

H=P; = /dst(h,E), P= /dsxa,ﬁah, P_ = d®x6_ho_h,
J= i/dsxa_ﬁ(xé—)'(a— 2)h,
J- = / d®x[xH(h,h) + O_h(x~ 8 — 2£)h+ S,

— canonical realization of Poincare algebra in light-cone gravity

29



Symmetries of light-cone gravity

Notion of symmetry

>R

. - 5 -
A canonical transformation  (h,h) =+ (A,
which leaves the action invariant

)
5xS[h, Al =0
Transformation laws = P.B. with the generator Gx[h, h], e.g.

dxh={Gx,h}ps

For instance,
Poincaré generators in terms of the fields hand h  [Bengtsson-Bengtsson-Brink, 1983]

H=P; = /dst(h,E), P= /dsxa,ﬁah, P_ = d®x6_ho_h,
J= i/dsxa_ﬁ(xé—)'(a— 2)h,
J- = / d®x[xH(h,h) + O_h(x~ 8 — 2£)h+ S,

— canonical realization of Poincare algebra in light-cone gravity

Is there any residual reparameterization freedom left?
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BMS symmetry from residual gauge invariance
@ First gauge conditiong__ =0
= 9.7 =0 = ¢t=f(xtx)
Second gauge condition g_; = 0 yields
0-¢gj+ 0ig g =0
Fourth gauge condition fixes x* dependence of f(x, x/), etc.

@ Residual diffeomorphisms (expressed in x, X basis)

£+

fixt,x,%) = %x*(@?-{-éY)-&- T(x,X)
¢ = —afx*+m§f8lh+ Y(x, %)+ O(x?), €=(&)"

€ = @Y+ +(0:)x + (9:6)x
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BMS symmetry from residual gauge invariance

@ First gauge conditiong__ =0
= 9.7 =0 = ¢t=f(xtx)
Second gauge condition g_; = 0 yields
0-¢gj+ 0ig g =0
Fourth gauge condition fixes x* dependence of f(x, x/), etc.

@ Residual diffeomorphisms (expressed in x, X basis)

et = f(xt,x,x) = %x*(@?-{- aY) + T(x,X)
€ = —ofx- +m§falh+ Y(x.%) + O(2), &= (&)
€ = (@Y HIV)IXT +(9+)x + (816X

@ Is this a symmetry of the light-cone action? Yes,
5eS[h,hl =0 iff 9°Y =0=2582Y
Y,Y at most linearin x,x —  only Lorentz rotations, no superrotations :(

Poincaré symmetry enhanced by one arbitrary constant: T(x, X)
[Ananth, Brink and SM]
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|
BMS algebra in light-cone gravity

o Transformation law (on x* = 0 surface),
- = o 89 d =0
Syyrh = Y(X)Bh+Y(R)0h + (@Y —Y)h+ T o= h—0T—h—3T—h

- -
—onto. (hh- Tn Py
2" o'

9 72 o 2
72/€T§(h3_h)+4n7'8—2<8—7h6 h) + O(k%)

@ BMS algebra in the phase space of (h, h)

[60V1. V1. T, 60Ye, Yo, To) | b = 6(Yaz, Yiz, Tia) b,
with parameters
Y12 = Y25Y1 — Y1(§Y2
712 = 72871 — 71 672
- — 1 _ _
Tio = [Y20Ty + Y20Ty +§T2(8Y1 + oY1) — 1+ 2).
@ Canonical generator for supertranslations
Gr /d3x8 h(sth) = / a®xo_h {T—h ara—h—araih} + O(k),

éth = [Gr,h], 6&rh = [Gr,h].



Light-cone representation of the BMS algebra

@ Light-cone Poincaré algebra
K: {P,P Pt J Jt JF "7}
D: {PT=H,J,J7}
[K,K] = K, [K,D] =D, [D,D]=0.

@ Light-cone BMS algebra

K — K,
D — D(T),

[K,K] = K, [K DT)] =DT), [DT),DT)] =0.
Dynamical part enhanced to infinite-dim supertranslations labeled by a single parameter

oo
T(x,X) = > Cmnx"X"=cCo0+ Cr,oX+ Co1X+ ...

m,n=0

@ Poincaré part of the BMS _
PT=PT=0
= D(T)reducestoD: {H,J—,J-} — the three “Hamiltonians” of Dirac
[Ananth, Brink and SM]
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Light-cone BMS versus BMS at spatial infinity

BMS in front form
@ Light-cone Poincaré algebra
K: {P,P,PH U2 J"J" 0}
D: {P =HJ ,J}
[K,K] = K,[K, D] = D,[D,D] =0
@ Going from Poincaré to BMS
K —- K, D — DT),
[D(T), D(T)] =0
labelled by

T(X,)_() = Co,0 + C1,0X + Cg)1)_(+ .
@ Poincaré subgroup
PT=8T=0
D(T) — {H,J7,J7}

— 3 “Hamiltonians” of Dirac’s front form

BMS in Instant form

@ Poincaré algebra
in spherical coordinates : x* = (t,r, 0, ¢)
{Lorentz M"”  Translations P*}

[M,M] = M,[P, M] = P,[P,P] =0

@ Going from Poincaré to BMS
MHY - M*Y ) P ST,
[ST,8T] =0
labelled by
1

T(0,0)=a0Y0+ Y amYim+-.-
~—~

m=—1
spherical harmonics
@ Poincaré subgroup
oaT(0,0) =0, x*=1{6,¢}
ST — {P° P",P? P¥}: Abelian ideal

4

[Ananth and SM; arXiv:2305.09735]
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Summary: Does (3+1) equal (2+2)7?

(3+1): Asymptotic symmetries at spatial infinity

Symmetry = invariance of symplectic form or Hamiltonian action

Boundary value problem on a Cauchy hypersurface

Integrability of boost charges is a subtle issue

Spin 1: Must include a surface dof W to obtain full U(1) gauge symmetries
Setting ¥ to zero amounts to improper gauge fixing

Spin 2: Supertranslations obtained without any extra surface degrees of freedom

Superrotations could not be canonically realized (for asymptotically flat BCs)

(2+2): Residual gauge symmetries in light-cone formulation

Symmetry = invariance of light-cone action
Characteristic initial value problem on a null hypersurface
Integrability of boost charges is a subtle issue

Spin 1: Must include a zero mode « to obtain all residual gauge symmetries
Setting « to zero amounts to residual gauge fixing

Spin 2: Supertranslations obtained without introducing any zero modes

Superrotations could not be canonically realized (on Mink background)




Some concluding remarks...

How to connect to null infinity?

@ Celestial and Carrollian holography, scattering amplitudes, ...

@ Superrotations, Diff(S?) and other extensions:
Do we need to extend the phase space?
Why do we need boundary d.o.f. in some cases, such as spin 1 and spin 3/2?

@ Decoupling of gauge algebra (‘pure supertranslations’) from Poincaré using supertranslation-inv Lorentz
charges — Can we see this at Z" or in the front form?

[Oscar Fuentealba, Marc Henneaux,and Cédric Troessaert]

4
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How to connect to null infinity?

@ Celestial and Carrollian holography, scattering amplitudes, ...

@ Superrotations, Diff(S?) and other extensions:
Do we need to extend the phase space?
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@ Decoupling of gauge algebra (‘pure supertranslations’) from Poincaré using supertranslation-inv Lorentz
charges — Can we see this at Z" or in the front form?

[Oscar Fuentealba, Marc Henneaux,and Cédric Troessaert])

Connections with amplitudes, (Anti) self-dual and all that
@ Light-cone action in a basis of helicity states - well suited for on-shell physics
@ Various applications- MHV Lagrangians , KLT relations , Double copy methods
[Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]
@ Double copy construction for SD sectors [Campiglia-Nagy '21]
@ Double copy for BMS symmetries, Newmann-Penrose formalism, Weyl double copy, ...
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Formal aspects of null-front Hamiltonian analysis

@ Role of boundary degrees of freedom, zero modes, etc.
@ Dictionary between residual gauge symmetries in (2+2) with
asymptotic symmetries at Z* and /°

@ Comparison with the initial value problem in the instant form,
Equivalent of Cauchy hypersurfaces in the front form?

[Nagarajan-Goldberg '85]
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Formal aspects of null-front Hamiltonian analysis

@ Role of boundary degrees of freedom, zero modes, etc.
@ Dictionary between residual gauge symmetries in (2+2) with
asymptotic symmetries at Z*+ and i°

@ Comparison with the initial value problem in the instant form,
Equivalent of Cauchy hypersurfaces in the front form? L_

[Nagarajan-Goldberg '85]

Parity conditions at /% +— Antimopal map at Z* «— Null matching conditions in Front form

7
s
S-.
AntipodaL MaP Ar
NULL TofrTy .
\
\
I\
v \
o 8
i K=ct
~O N~
X=¢
Parity (orndiTions « =
AT SPATIAL  InpNITY Teella-nt MATEnNG ConDiTions
T Front Form




“| feel that there will always be something missing
from them [non-Hamiltonian methods], which we
can only get by working from a Hamiltonian”

-PA.M. Dirac,
Lectures on Quantum Mechanics (1964)

THANK YOU!
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APPENDIX
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Light-cone Poincaré algebra in d = 4

@ Non-vanishing commutators of the Poincaré algebra

J+1 + I'J+2 . J+1 _ I-J+2

Jt = & , — 7J:J127 H— P, —_p
V2 V2 *
[H,J" 7] = —iH, [H,J"] = —iP, [H,J"] = —iP
[PT,Jt7] = iPT, [Pt,J7] = —iP, [Pt,d7] = —iP
[P,J7] = —iH, [P,J*] = —iP", [P,J] =P

@ Underlying Carrollian algebra
Rotation J = {J'2,J*~,J*,J"} ,Boosts K = {J~,J "}
Translations P = {P, P, P_} , Hamiltonian H = P,
[J,31=0, [I,P]=P, [J,K]=K
[J,H]=0, [H,P]=0, [H,K]=0
[P,P]=0, [K,K]=0, [P,K]=H

@ In terms of the Kinematical-Dynamical split

... and many more

K= {P,P_ M M_;,M,_}, D={P. M.}

[K,K] = K, [K, D]=D, [D D] =

0



Decoupling of gauge algebra from Poincaré at i°

Recent developments in the asymptotic symmetry analysis at spatial infinity

[Oscar Fuentealba, Marc Henneaux,and Cédric Troessaert]

@ Spin 1: Large gauge transformations
A, =0ue, e~a(0,o)r+ b0, p)nr+c(0,9)+ ...
Asymptotic algebra
[Groincaré s Groincars] = Groincaré »  [Ggauge » Groincare] = Ggauge s [Ggauge» Gaauge] = 0,
1

[GGauge7 GGauge] =C,
Central charge C allows a definition of ‘gauge-invariant’ Lorentz generators such that

[GPoincarév GPoincaré] = GPoincaré ) [GGaugea GPoincaré] = 07
— Gauge algebra completely decoupled form Poincaré
[arXiv: 2301.05989]

@ Further extended to spin-2: BMS,, BMSs, super-BMS; etc.
[arXiv: 2211.10941 and arXiv:2305.05436]

@ Can we find similar decoupling at Z* or in the front form? Does this happen only at i°?
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