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Asymptotic symmetry analysis: the ‘usual’ way

BMS at I+: Bondi Approach [Bondi-van der Burg-Metzner-Sachs, 1962]

BMS group as the symmetry of gravity at null infinity for asymptotically flat spacetimes

Use Bondi coordinates (u, r , xA), Bondi gauge and impose boundary conditions as r →∞

ds2 = e2β V
r

du2 − 2 e2β du dr + gAB(dxA − UAdu) (dxB − UBdu)

Look for diffeomorphisms that preserve the form of the metric

Poincaré in the bulk: ξµ(x) = ωµν xν + aµ

(6-dim Lorentz ωµν ) + (4 translations aµ) : 10 dim

Poincaré = Lorentz n Translations

↓

BMS at I+: aµ replaced by a function α : ∞-dim

BMS4 = Lorentz n “Supertranslations”

Define Noether charges and compute the asymptotic algebra
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All roads lead to BMS?

Bondi approach: [since 1960s]
BMS as the asymptotic symmetry group at null infinity
Further extensions to superrotations, Diff (S2), Celestial Holography,W+∞ algebras
Links to soft theorems, Ward identities and memory effects, Strominger’s IR triangle, ...

[Bondi-van der Burg-Metzner-Sachs ’62, Barnich-Troessaert, Hawking-Perry-Strominger Compère, Campiglia,
Detournay, Donnay, Freidel, Geiller, Grumiller, Laddha, Pasterski, Puhm, Raclariu, Sen, Sheikh-Jabbari, Zwikel
and many more]

Conformal Carroll approach: [since 2014]
BMS group as conformal Carroll group
Further extensions to other Carrollian structures
Symmetries of null hypersurfaces, Carrollian field theory, Carrollian fluids

[Duval-Gibbons-Hovarthy ’14, Campoleoni, Ciambelli, Donnay, Fiorucci, Freidel, Flanagan, Heffray, Leigh,
Obers, Petropoulos, Ruzziconi and many more]

Hamiltonian approach: [since 2017]
BMS symmetry at spatial infinity from the ADM Hamiltonian action
Canonical realization of BMS in the ADM phase space
Relevant for Initial value problem of GR on Cauchy/ Characteristics hypersurfaces, etc.

[Henneaux-Troessaert ’17, Fuentealba, Guilini, SM, Matulich, Neogi, Riello, Tanzi, ...]
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Two lessons from Dirac

Lesson I: Forms of relativistic dynamics [Dirac 1959]

Three choices of “time” for describing Hamiltonian dynamics of relativistic systems

Instant form:
t = x0

Spacelike foliations

Front form: :
x+ = (x0 + x3)/

√
2

Null foliations

Point form:
τ = proper time

Hyperbolic foliations

Poincaré algbera splits into

→ Kinematical generators K that are “simple”
→ Dynamical generators or “Hamiltonians” D that involve time derivatives

4



Two lessons from Dirac

Lesson II: Constrained Hamiltonian systems [Bargmann 1959; Dirac 1959]

Gauge theories are constrained Hamiltonian systems

SH [φ, πφ, λi ] =

∫
dt
∫

d3x
(
πφφ̇−H− λiG i

)
G i → gauge cosntraints, λi → Largrange multipliers

algorithm for classifying gauge constraints (primary, first-class, ...)

symmetries generated by first-class constraints

The usual route: Instant form + Constrained Hamiltonian systems

Many successes: BRST quantization, Duality-invariant actions, Asymptotic symmetries at i0, . . .

An alternative route: Front form + Constrained Hamiltonian systems

Gauge constraint in the front form are often solvable

Provides a Hamiltonian framework for symmetries of null hypersurfaces

Many successes: Discrete light-cone quantization (DLCQ), Light-cone quantization of strings,
UV finiteness of N = 4 SYM, Higher-spin cubic action, etc.
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BMS symmetry at a glance

BMS symmetry in gravity

Carroll
Approach

Bondi
Approach

Hamiltonian
Approach

Constrained Hamiltonian
Systems

Dirac’s
Instant form

Dirac’s
Front form

Focus of this talk:

BMS-like symmetries (infinite-dimensional extension of Poincaré) using Hamiltonian methods
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BMS in Hamiltonian formulations: (3+1) and (2+2)1

Part 1: Instant form

(3+1): Hamiltonian dynamics on a spatial hypersurface

→ BMS symmetry from ADM action

Work done with Oscar Feuntealba, Marc Henneaux,
Javier Matulich and Cedric Troessaert

[ArXiv:1904.04495 and ArXiv:2007.12721]

Part 2: Front form

(2+2): Hamiltonian dynamics on a null hypersurface

→ BMS symmetry from light-cone action

Work done with Sudarshan Ananth and Lars Brink

[ArXiv:2012.07880 and ArXiv:2101.00019]

1split of four dimensional spacetime into 2 null + 2 transverse spatial coordinates
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Hamiltonian formulation of GR à la Dirac and ADM

3+1 foliation of spacetime by a family of spacelike surfaces Σt

ADM decomposition: (4)g00 = −N2 + N i Ni ,
(4)g0i = Ni ,

(4)gij = gij

Dynamical variables:

gij = metric on Σt

πij = conjugate momenta

ADM action for gravity [Dirac ’58, Arnowitt-Deser-Misner ’62]

SADM [gij , π
ij ,N,N i ] =

∫
dt{
∫

d3x(πij ġij − NH− N iHi )−
∮

B∞}

Boundary terms B∞ ensure a good variational principle [Regge-Teitelboim ’74]
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Hamiltonian formulation of GR à la Dirac and ADM

ADM action for gravity [Dirac ’58, Arnowitt-Deser-Misner ’62]

SADM [gij , π
ij ,N,N i ] =

∫
dt{
∫

d3x(πij ġij − NH− N iHi )−
∮

B∞}

Lagrange multipliers, N and N i implement the constraints

H = −
√

gR +
1
√

g
(πijπij −

1
2
π2) , Hi = − 2∇jπ

j
i

Constraints generate gauge symmetries

Symplectic form

Ω =

∫
d3x dVπ

ij ∧ dV gij , dV ≡ exterior derivative in field space

Phase space : {gij , π
ij}

Poisson bracket: {gij (x), πkl (x ′)} = δ
(k
(i δ

l)
j)δ

(3)(x − x ′)
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Symmetries of the ADM action

Symmetries ≡ Strict invariance of the symplectic form

Ω =

∫
d3x dVπ

ij ∧ dV gij ,

ξ generates a canonical transformation if

LξΩ = dV (ιξΩ) = 0 ⇒ ιξΩ = −dV Gξ

Gξ is the generator associated with this canonical transformation.

Diffeomorphisms:

δξgij =
2ξ
√

g

(
πij −

1
2

gijπ

)
+ Lξgij ,

δξπ
ij = −ξ

√
g
(

R ij −
1
2

g ij R
)

+
1
2
ξ
√

g
(
πmnπ

mn −
1
2
π

2
)

−2ξ
√

g
(
π

im
π

j
m −

1
2
π

ij
π

)
+
√

g
(
ξ
|ij − g ij

ξ
|m
|m

)
+ Lξπij

Canonical generator for all symmetries

Gξ,ξi =

∫
d3x

(
ξH+ ξiHi

)
+ Qξ,ξi ,
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Canonical generator for all symmetries

Gξ,ξi =

∫
d3x

(
ξH+ ξiHi

)
+ Qξ,ξi ,

a) Gauge symmetry: Qξ,ξi = 0

Proper gauge transformations do not affect the physical states

b) True symmetry: Qξ,ξi 6= 0

Improper gauge transformations affect the physical states

E.g. Poincaré symmetry
ξ = bi x i + a0,

ξi = ωi
j x j + ai

bi boosts, ωi
j rotations, a0 time translation, ai spatial translations

QPoincaré 6= 0 but no∞-dimensional BMS at spatial infinity [Regge-Teitelboim’ 74]

How to recover the BMS group at spatial infinity?
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How to ‘see’ BMS symmetry in the ADM formulation?

Hamiltonian action with standard boundary conditions

↓

Carefully relax the boundary conditions

↓

Ensure finiteness of the ADM action and the symplectic form

↓

Check that all Poincaré charges are still canonical

↓

Define canonical generators and compute the asymptotic symmetry algebra

12



How to ‘see’ BMS symmetry in the ADM formulation?

Hamiltonian action with standard boundary conditions

↓

Carefully relax the boundary conditions

↓

Ensure finiteness of the ADM action and the symplectic form

↓
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Asymptotic conditions I

First ingredient: fall-off conditions

We use spherical coordinates (r , xA) where xA are coordinates on the sphere at i0

Asymptotically flat spacetimes: metric approaches Minkowski as r →∞

grr = 1 +
1
r

h̄rr +O(r−2) ,

grA = λ̄A +
1
r

h(2)
rA +O(r−2) ,

gAB = r2gAB + r h̄AB + h(2)
AB +O(r−1) .

Barred quantities (e.g., h̄ij , π̄ij ) are functions on the 2-sphere

Conjugate momenta

πrr = π̄rr +
1
r
πrr

(2) +O(r−2) ,

πrA =
1
r
π̄rA +

1
r2
πrA

(2) +O(r−3) ,

πAB =
1
r2
π̄AB +

1
r3
πAB

(2) +O(r−4) .

This part is the same as that of Regge-Teitelboim
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Asymptotic conditions II

Second ingredient: parity conditions on leading terms

“Gauge-twisted” parity conditions: [Henneaux-Troessaert ’18]

hrr = even ,

λA = (λA)odd + DAζr − ζA ,

hAB = (hAB)even + DAζB + DBζA + 2gABζr

πrr = (πrr )odd −
√

g4V ,

πrA = (πrA)even −
√

gD
A

V ,

πAB = (πAB)odd +
√

g(D
A

D
B

V − gAB4V ) ,

Parity: (r , θ, φ)→ (r , π − θ, φ + 2π)

Recall:∮
(odd function) = 0 on the sphere

With these parity conditions, Hamiltonian action and symplectic form are finite as r →∞

Generalization of Regge-Teitelboim strict parity conditions
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Asymptotic conditions III

Third ingredient: stronger fall-off of the constraints

H ∼ O(r−3) , Hi ∼ O(r−3)

to remove divergent conributions to Poincaré charges

Fourth ingredient: Involves the mixed radial-angular component, h̄rA → more on this later

Fall-off of the Poincaré (ξ, ξi ):

ξ = br + a0,

ξr = w1 ,

ξA = Y A +
1
r

D̄Aw1 ,

Y A rotations, b boosts, a0 time translations, w1 spatial translations

Next step: Check if Poincaré generators are still canonical
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Fourth ingredient: Involves the mixed radial-angular component, h̄rA → more on this later

Fall-off of the Poincaré (ξ, ξi ):
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Canonical realization of Poincare generators

Strict invariance of the symplectic form

Ω =

∫
d3x dVπ

ij ∧ dV gij ,

ξ generates a canonical transformation if

LξΩ = dV (ιξΩ) = 0 ⇒ ιξΩ = −dV Gξ

Gξ is the generator associated with this canonical transformation.

Under Lorentz rotations Y A and spacetime translations (a0, ai ),

L(Y A,a0,ai )Ω = 0 ⇒ Canonical generators well-defined

Under Lorentz boosts b (in spherical coordinates)

dV (ιbΩ) = −
∫

dθdϕ
√

g

[
b dV hdV

(
hrr + DAλ

A
)

−DAb dVλ
AdV h + bD

A
dVλ

BdV hAB

)]
6= 0

How to make the symplectic form invariant under boosts?
16



Non-integrability of the boost generators: Resolution

Perform a gauge transformation

ε(b) ≡ bF , F is field-dependent

dV (ιbΩ) + dV
(
ιε(b)Ω

)
= −

∫
dθdϕ

√
ḡ

[
2b
(

dV F +
1
2

dV h̄
)

dV

(
h̄rr + D̄Aλ̄

A
)

−D̄Ab dV λ̄
AdV h̄ + bD̄AdV λ̄

BdV h̄AB

]

Set F = −
1
2

h̄

Fourth ingredient of asymptotic conditions (Recall: hrA = λA +O(r−1))

∫
dθdϕ

√
g
[
DAb dVλ

AdV h̄ − bD
A

dVλ
BdV hAB

]

Set λ̄A = 0

dV (ιbΩ) = 0 ⇒ ιbΩ = −dV Gb → Boosts are canonical again!

No need for an extra boundary field in order to define canonical generators: more on this later
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Finally, the new boundary conditions read

grr = 1 +
1
r

h̄rr + ... ,

grA = ��̄λA +
1
r

h(2)
rA + ... ,

gAB = r2gAB + r h̄AB + h(2)
AB + ... .

πrr = π̄rr +
1
r
πrr

(2) + ... ,

πrA =
1
r
π̄rA +

1
r2
πrA

(2) + ... ,

πAB =
1
r2
π̄AB +

1
r3
πAB

(2) + ... .

With gauge-twisted parity conditions

hrr = even ,

λA = (λA)odd + DAζr − ζA = 0 ⇒ ζA = DAζr = DAU ,

hAB = (hAB)even + 2(DADBU + gABU)

πrr = (πrr )odd −
√

g4V ,

πrA = (πrA)even −
√

gD
A

V ,

πAB = (πAB)odd +
√

g(D
A

D
B

V − gAB4V ) ,

Regge-Teitelboim parity conditions relaxed with two functions: U odd and V even
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Are there more symmetries?

Yes, diffeos xµ → xµ + εµ(x) with parameters

ε0(θ, φ) = T even , εi (θ, φ) = ∂i W odd → one single arbitrary function T (θ, φ)

Time component of gauge parameter

ε0 = T even = T0 + T2 + T4 + T6 + · · ·

Spatial components

εi = εi +O(r−1) , εi = Di (rW ) ,

W r = W = W1 + W3 + W5 + W7 + · · · , W A =
1
r

D
A

W ,

Where are the spacetime translations? Expand T (θ, φ) in spherical harmonics

T (θ, φ) = T0,0Y0,0 +
1∑

m=−1

W1,mY1,m +
1
4

2∑
m=−2

T2,mY2,m + · · ·

︸ ︷︷ ︸
time spatial supertranslations

translations a0 translations ai

[Henneaux-Troessaert 2018; Henneaux-Fuentealba-SM-Matulich-Troessaert 2020]
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Asymptotic symmetries at spatial infinity

Canonical generator for BMS

Gξ,ξi =

∫
d3x

(
ξH+ ξiHi

)
+ Qξ,ξi ,

Qξ,ξi =

∫
dθdϕ

{
b

[√
ḡ(−

1
2

h̄h̄rr +
1
4

h̄2 −
3
4

h̄AB h̄AB) +
2√
ḡ
π̄r

Aπ̄
rA

]
+ 2YAπ̄

rB h̄A
B

+2
√

ḡT h̄rr︸︷︷︸+2W (π̄rr − π̄A
A)︸ ︷︷ ︸
}

even odd

(Todd ,Weven) → proper gauge transformations

(Teven,Wodd ) → improper gauge transformations : Supertranslations

Poisson bracket algebra {
Gξ1,ξ

i
1
,Gξ2,ξ

i
2

}
= Ĝξ̂,ξ̂i ,

Asymptotic symmetry algebra of gravity at spatial infinity

BMS4 = SO(3, 1) n supertranslations
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Asymptotic symmetry algebra

Poisson bracket algebra {
Gξ1,ξ

i
1
,Gξ2,ξ

i
2

}
= Ĝξ̂,ξ̂i ,

with the parameters

Ŷ A = Y B
1 ∂BY A

2 + γ
ABb1∂Bb2 − (1↔ 2) ,

b̂ = Y B
1 ∂Bb2 − (1↔ 2) ,

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1DA − 2W − b1DADAW2 − (1↔ 2) ,

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2)

BMS as the infinite-dimensional enhancement of Poincaré, Gξ,ξi = GLorentz + GT ,W

{
GLorentz ,GLorentz

}
= GLorentz

{
GLorentz ,GLorentz

}
= GLorentz{

GLorentz ,Ga,ai

}
= Ĝ(â,âi ) Ga,ai → GT ,W

{
GLorentz ,GT ,W

}
= ĜT̂ ,Ŵ{

Ga,ai ,Ga,ai

}
= 0

{
GT ,W ,GT ,W

}
= 0

[Henneaux-Troessaert 2018; Henneaux-Fuentealba-SM-Matulich-Troessaert 2020]
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Asymptotic symmetry algebra

Poisson bracket algebra {
Gξ1,ξ

i
1
,Gξ2,ξ

i
2

}
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b̂ = Y B
1 ∂Bb2 − (1↔ 2) ,

T̂ = Y A
1 ∂AT2 − 3b1W2 − ∂Ab1DA − 2W − b1DADAW2 − (1↔ 2) ,

Ŵ = Y A
1 ∂AW2 − b1T2 − (1↔ 2)

BMS as the infinite-dimensional enhancement of Poincaré, Gξ,ξi = GLorentz + GT ,W{
GLorentz ,GLorentz

}
= GLorentz

{
GLorentz ,GLorentz

}
= GLorentz{

GLorentz ,Ga,ai

}
= Ĝ(â,âi ) Ga,ai → GT ,W

{
GLorentz ,GT ,W

}
= ĜT̂ ,Ŵ{

Ga,ai ,Ga,ai

}
= 0

{
GT ,W ,GT ,W

}
= 0

[Henneaux-Troessaert 2018; Henneaux-Fuentealba-SM-Matulich-Troessaert 2020]
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BMS in Hamiltonian formulations: (3+1) and (2+2)

Part 1: Instant form

(3+1): Hamiltonian dynamics on a spatial hypersurface

→ BMS symmetry from ADM action

Work done with Oscar Feuntealba, Marc Henneaux,
Javier Matulich and Cedric Troessaert

[ArXiv:1904.04495 and ArXiv:2007.12721]

Part 2: Front form

(2+2): Hamiltonian dynamics on a null hypersurface

→ BMS symmetry from light-cone action

Work done with Sudarshan Ananth and Lars Brink

[ArXiv:2012.07880 and ArXiv:2101.00019]
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Poincaré algebra in Dirac’s front form

Light-cone coordinates

x+ =
x0 + x3
√

2
, x− =

x0 − x3
√

2
, x i (i = 1, 2)

x+ Light-cone time ⇒ P+ = i∂+ = −P− Hamiltonian

The three “Hamiltonians” in the front form

Poincaré generators in the instant form: (Pµ,Mµν)

[P,P] ∼ 0 , [P,M] ∼ P , [M,M] ∼ M

(P0,M0i ) → four dynamical generators or “Hamiltonians”

Poincaré generators in front form

Kinematical K = {P i ,P+,M ij ,M+i ,M+−} , (i = 1, 2)

Dynamical D = {P−,M i− ≡ J−, J̄−︸ ︷︷ ︸ } → three “Hamiltonians” in the front form

2 boosts

[K, K ] = K , [K, D ] = D , [D, D ] = 0

Poincaré algebra in front form has a Carrollian structure − isometry of null hypersurfaces
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Null-front Hamiltonian formulation of gravity

“Forms of relativistic dynamics” [Dirac ’49]→ Use a null time parameter to study dynamics

“On the characteristic initial value problem in gravitational theory” [R. K. Sachs ’62]

“Covariant 2+2 formulation of the initial-value problem in general relativity”
[d’Inverno and Smallwood ’79] [Gambini-Restuccia, C. Torre, M. Kaku,...]

Spacelike foliation of codim 2 (instead of 1)
Unconstrained Hamiltonian systems: constraint equations often become solvable
Gravitational d.o.f. identified with the “conformal two-metric”

Our focus:

Set up a particular example of the 2+2 formulation: lc2 gravity [Scherk-Schwarz’ 75]

Study the BMS symmetry from residual gauge invariance
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Gravity in the light-cone gauge

“lc2 formalism” [Scherk-Schwarz, Schwarz-Goroff, Bengtsson-Cederwall-Lindgren]
Light-cone gauge: Set the “minus” components to zero

g−− = g−i = 0, (i = 1, 2) 10− 3 = 7

Parametrization
g+− = −eφ, gij = eψγij

φ,ψ,γij are real and det γij = 1

Light-cone metric

dS2
LC = gµνdxµdxν = − 2eφdx+dx+ + g++(dx+)2 + g+i dx+dx i + eψ γij dx i dx j

given in terms of 7 functions {φ, ψ, γij , g++, g+i}

“2+2” split of the Einstein field equations Rµν = 0 [Sachs, d’Inverno-Smallwood, ...]

Dynamical equations: Rij = 0
Constraint equations: R−− = R−i = 0
Subsidiary equations: R++ = R+i = 0
Trivial equations: R+− = 0
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Gravity in the light-cone gauge

Can we solve the constraint equations? Subject to choice of coordinates, gauge conditions, etc.

Constraint equation R−− = 0

2 ∂−φ∂−ψ − (∂−ψ)2 − 2∂−2ψ +
1
2
∂−γ

ij ∂−γij = 0 .

Fourth gauge choice : [Scherk-Schwarz]

φ =
ψ

2
7− 1 = 6

allows us to integrate 2 out ψ

ψ =
1
4

1
∂−

2 (∂−γ
ij ∂−γ

ij ) 6− 1 = 5

The constraint R−i = 0 eliminates g+i 5− 2 = 3

R−+ = 0 allows us to eliminates g++ 3− 1 = 2

2Inverse derivative defined as

f (x−) =
1

∂−
g(x−) = −

∫
ε(x− − y−) g(y−) dy− + “ constant ”

Integration constants set to zero for asymptotically Minkowski spacetimes
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Light-cone action for gravity

Closed form expression

S[γij ] =
1

2κ2

∫
d4x eψ

(
2 ∂+∂−φ + ∂+∂−ψ −

1
2
∂+γ

ij
∂−γij

)
−

1
2

eφ−2ψ
γ

ij 1
∂−

Ri
1
∂−

Rj ,

−eφγ ij
(
∂i∂jφ +

1
2
∂iφ∂jφ− ∂iφ∂jψ −

1
4
∂iγ

kl
∂jγkl +

1
2
∂iγ

kl
∂kγjl

)
where

Ri ≡ eψ
( 1

2
∂−γ

jk
∂iγjk − ∂−∂iφ− ∂−∂iψ + ∂iφ∂−ψ

)
+ ∂k (eψ γ jk

∂−γij )

Perturbative expansion

γij = (eκH )ij , H =

(
h11 h12
h12 −h11

)
Complexify the fields (and x i )

h =
1
√

2
(h11 + i h12) , h̄ =

1
√

2
(h11 − i h12)

h and h̄ have helicity +2 and -2 respectively→ gravitational d.o.f. identified with γij

Light-cone Lagrangian (perturbative)

L =
1
2

h̄ 2 h + 2κ h̄ ∂−2
(
∂̄

∂−
h
∂̄

∂−
h − h

∂̄2

∂−
2 h
)

+ c.c. + higher order terms
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Light-cone Hamiltonian for gravity

Conjugate momenta (recall: x+ is time)

L = h̄ (∂−∂+ − ∂ ∂̄) h + 2κ h̄ ∂−2
(
∂̄

∂−
h
∂̄

∂−
h − h

∂̄2

∂−
2 h
)

+ · · ·

π =
δL

δ(∂+h)
= − ∂−h̄ , π̄ =

δL
δ(∂+h̄)

= − ∂−h

(π, π̄) are primary constraints ⇒ Half the d.o.f than in the 3+1 formalism

→ a feature of all null-front Hamiltonian systems

Light-cone Hamiltonian for gravity

H = ∂h̄ ∂̄h + 2κ ∂2
−h̄

(
h
∂̄2

∂2
−

h −
∂̄

∂−
h
∂̄

∂−
h

)
+ c.c. + O(κ2)

Poisson brackets

[h(x), π(y)] = δ(x− − y−)δ(2)(x − y) ⇒ [h(x), h̄(y)] = ε(x− − y−) δ(2)(x − y) ,

[ h(x), h(y) ] = [ h̄(x), h̄(y) ] = 0 .

[Scherk-Schwarz’ 75, Bengtsson-Cederwall-Lindgren ’83]
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Symmetries of light-cone gravity

Notion of symmetry

A canonical transformation (h, h̄)
δX−−→ (h̃, ˜̄h)

which leaves the action invariant
δXS[h, h̄] = 0

Transformation laws = P.B. with the generator GX [h, h̄], e.g.

δX h = {Gx , h }PB

For instance,
Poincaré generators in terms of the fields h and h̄ [Bengtsson-Bengtsson-Brink, 1983]

H = P+ =

∫
d3xH(h, h̄) , P =

∫
d3x∂−h̄ ∂h , P− = d3x∂−h̄∂−h , · · ·

J = i
∫

d3x∂−h̄ (x ∂̄ − x̄∂ − 2)h ,

J− =

∫
d3x [xH(h, h̄) + ∂−h̄ (x−∂ − 2

∂

∂−
)h + S] , · · ·

→ canonical realization of Poincarè algebra in light-cone gravity

Is there any residual reparameterization freedom left?
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BMS symmetry from residual gauge invariance

First gauge condition g−− = 0

⇒ ∂−ξ
+ = 0 ⇒ ξ+ = f (x+, x j )

Second gauge condition g−i = 0 yields

∂−ξ
j gij + ∂iξ

+ g+− = 0

Fourth gauge condition fixes x+ dependence of f (x+, x j ), etc.

Residual diffeomorphisms (expressed in x , x̄ basis)

ξ+ = f (x+, x , x̄) =
1
2

x+(∂Y + ∂̄Y ) + T (x , x̄)

ξ = −∂f x− + κ ∂̄f
1
∂−

h + Y (x , x̄) +O(κ2) , ξ̄ = (ξ)∗

ξ− = −(∂Y + ∂̄Y )x− + (∂+ξ)x + (∂+ξ̄)x̄

Is this a symmetry of the light-cone action? Yes,

δξS[ h, h̄ ] = 0 iff ∂2Y = 0 = ∂̄2Y

Y ,Y at most linear in x , x̄ → only Lorentz rotations, no superrotations :(

Poincaré symmetry enhanced by one arbitrary constant: T (x , x̄)
[Ananth, Brink and SM]

30



BMS symmetry from residual gauge invariance

First gauge condition g−− = 0

⇒ ∂−ξ
+ = 0 ⇒ ξ+ = f (x+, x j )

Second gauge condition g−i = 0 yields

∂−ξ
j gij + ∂iξ

+ g+− = 0

Fourth gauge condition fixes x+ dependence of f (x+, x j ), etc.

Residual diffeomorphisms (expressed in x , x̄ basis)

ξ+ = f (x+, x , x̄) =
1
2

x+(∂Y + ∂̄Y ) + T (x , x̄)

ξ = −∂f x− + κ ∂̄f
1
∂−

h + Y (x , x̄) +O(κ2) , ξ̄ = (ξ)∗

ξ− = −(∂Y + ∂̄Y )x− + (∂+ξ)x + (∂+ξ̄)x̄

Is this a symmetry of the light-cone action? Yes,

δξS[ h, h̄ ] = 0 iff ∂2Y = 0 = ∂̄2Y

Y ,Y at most linear in x , x̄ → only Lorentz rotations, no superrotations :(
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BMS algebra in light-cone gravity
Transformation law (on x+ = 0 surface),

δY ,Y ,T h = Y (x) ∂̄h + Y (x̄) ∂h + (∂Y − ∂̄Y ) h + T
∂∂̄

∂−
h − ∂T

∂̄

∂−
h − ∂̄T

∂

∂−
h

− 2κ T ∂−

(
h
∂̄2

∂2
−

h −
∂̄

∂−
h
∂̄

∂−
h

)

− 2κ T
∂2

∂3
−

(h̄ ∂2
−h) + 4κ T

∂

∂2
−

(
∂

∂−
h̄ ∂2
−h
)

+O(κ2)

BMS algebra in the phase space of (h, h̄)[
δ(Y1,Y 1,T1) , δ(Y2,Y 2,T2)

]
h = δ(Y12,Y 12,T12) h ,

with parameters

Y12 ≡ Y2 ∂̄ Y1 − Y1 ∂̄ Y2

Y 12 ≡ Y 2 ∂ Y 1 − Y 1 ∂ Y 2

T12 ≡ [Y2 ∂̄ T1 + Y2 ∂ T1 +
1
2

T2(∂̄Y1 + ∂Y 1)] − (1↔ 2) .

Canonical generator for supertranslations

GT =

∫
d3x ∂−h̄ (δT h) =

∫
d3x ∂−h̄

{
T
∂∂̄

∂−
h − ∂T

∂̄

∂−
h − ∂̄T

∂

∂−
h

}
+ O(κ) ,

δT h = [GT , h] , δT h̄ = [GT , h̄] .
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Light-cone representation of the BMS algebra

Light-cone Poincaré algebra

K : {P, P̄,P+, J, J+, J̄+, J+−}
D : {P− ≡ H, J−, J̄−}

[K, K ] = K , [K, D ] = D , [D, D ] = 0 .

Light-cone BMS algebra

K → K ,
D → D(T ) ,

[K, K ] = K , [K, D(T ) ] = D(T ) , [D(T ), D(T ) ] = 0 .

Dynamical part enhanced to infinite-dim supertranslations labeled by a single parameter

T (x , x̄) =
∞∑

m,n=0

cm,nxm x̄n = c0,0 + c1,0x + c0,1x̄ + . . .

Poincaré part of the BMS
∂2T = ∂̄2T = 0

⇒ D(T ) reduces to D : {H, J−, J̄−} → the three “Hamiltonians” of Dirac
[Ananth, Brink and SM]
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Light-cone BMS versus BMS at spatial infinity

BMS in front form

Light-cone Poincaré algebra

K : {P, P̄,P+
, J12

, J+
, J̄+

, J+−}

D : {P− ≡ H, J−, J̄−}

[ K, K ] = K , [ K, D ] = D , [ D, D ] = 0

Going from Poincaré to BMS

K → K , D → D(T ) ,

[ D(T ), D(T ) ] = 0

labelled by

T (x, x̄) = c0,0 + c1,0x + c0,1x̄ + . . .

Poincaré subgroup

∂
2T = ∂̄

2T = 0

D(T ) → {H, J−, J̄−}

→ 3 “Hamiltonians” of Dirac’s front form

BMS in Instant form

Poincaré algebra

in spherical coordinates : xµ = (t, r , θ, ϕ)

{Lorentz Mµν
, Translations Pµ}

[ M, M ] = M , [ P, M ] = P , [ P, P ] = 0

Going from Poincaré to BMS

Mµν → Mµν
, Pµ → ST ,

[ST , ST ] = 0

labelled by

T (θ, ϕ) = a0,0Y0,0 +
1∑

m=−1

a1,m Y1,m︸︷︷︸+ . . .

spherical harmonics

Poincaré subgroup

∂AT (θ, ϕ) = 0 , xA = {θ, ϕ}

ST → {P0,Pr ,Pθ,Pϕ} : Abelian ideal

[Ananth and SM; arXiv:2305.09735]
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Summary: Does (3+1) equal (2+2)?

(3+1): Asymptotic symmetries at spatial infinity

Symmetry ≡ invariance of symplectic form or Hamiltonian action

Boundary value problem on a Cauchy hypersurface

Integrability of boost charges is a subtle issue

Spin 1: Must include a surface dof Ψ to obtain full U(1) gauge symmetries

Setting Ψ to zero amounts to improper gauge fixing

Spin 2: Supertranslations obtained without any extra surface degrees of freedom

Superrotations could not be canonically realized (for asymptotically flat BCs)

(2+2): Residual gauge symmetries in light-cone formulation

Symmetry ≡ invariance of light-cone action

Characteristic initial value problem on a null hypersurface

Integrability of boost charges is a subtle issue

Spin 1: Must include a zero mode α to obtain all residual gauge symmetries

Setting α to zero amounts to residual gauge fixing

Spin 2: Supertranslations obtained without introducing any zero modes

Superrotations could not be canonically realized (on Mink background)
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Some concluding remarks...

How to connect to null infinity?

Celestial and Carrollian holography, scattering amplitudes, ...

Superrotations, Diff (S2) and other extensions:
Do we need to extend the phase space?
Why do we need boundary d.o.f. in some cases, such as spin 1 and spin 3/2?

Decoupling of gauge algebra (‘pure supertranslations’) from Poincaré using supertranslation-inv Lorentz
charges→ Can we see this at I+ or in the front form?

[Oscar Fuentealba, Marc Henneaux,and Cédric Troessaert]

Connections with amplitudes, (Anti) self-dual and all that

Light-cone action in a basis of helicity states - well suited for on-shell physics

Various applications- MHV Lagrangians , KLT relations , Double copy methods

[Gorsky-Rosly, Ananth-Theisen, Ananth-Kovacs-Parikh, ...]

Double copy construction for SD sectors [Campiglia-Nagy ’21]

Double copy for BMS symmetries, Newmann-Penrose formalism, Weyl double copy, ...
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Formal aspects of null-front Hamiltonian analysis

Role of boundary degrees of freedom, zero modes, etc.

Dictionary between residual gauge symmetries in (2+2) with
asymptotic symmetries at I+ and i0

Comparison with the initial value problem in the instant form,
Equivalent of Cauchy hypersurfaces in the front form?

[Nagarajan-Goldberg ’85]

Parity conditions at i0 ←→ Antimopal map at I+ ←→ Null matching conditions in Front form
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“I feel that there will always be something missing
from them [non-Hamiltonian methods], which we
can only get by working from a Hamiltonian”

-P.A.M. Dirac,
Lectures on Quantum Mechanics (1964)

THANK YOU!
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APPENDIX
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Light-cone Poincaré algebra in d = 4

Non-vanishing commutators of the Poincaré algebra

J+ =
J+1 + iJ+2

√
2

, J̄+ =
J+1 − iJ+2

√
2

, J = J12
, H = P+ = −P− .

[H, J+−] = −iH , [H, J+] = −iP , [H, J̄+] = −i P̄

[P+, J+−] = iP+ , [P+
, J−] = −iP , [P+

, J̄−] = −i P̄

[P, J̄−] = −iH , [P, J̄+] = −iP+
, [P, J] = P

... and many more

Underlying Carrollian algebra

Rotation J = {J12, J+−, J+, J̄+} , Boosts K = {J−, J̄−}

Translations P = {P, P̄,P−} , Hamiltonian H = P+

[ J, J ] = J , [ J, P ] = P , [ J,K] = K

[ J,H ] = 0 , [ H, P] = 0 , [ H,K] = 0
[ P, P] = 0 , [ K,K] = 0 , [ P,K] = H

In terms of the Kinematical-Dynamical split

K = {Pi ,P−,Mij ,M−i ,M+−} , D = {P+,Mi+}

[ K, K ] = K , [ K, D ] = D , [ D, D ] = 0
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Decoupling of gauge algebra from Poincaré at i0

Recent developments in the asymptotic symmetry analysis at spatial infinity

[Oscar Fuentealba, Marc Henneaux,and Cédric Troessaert]

Spin 1: Large gauge transformations

Aµ = ∂µε , ε ∼ a(θ, ϕ)r + b(θ, ϕ)lnr + c(θ, ϕ) + . . .

Asymptotic algebra

[GPoincaré,GPoincaré] = GPoincaré , [GGauge,GPoincaré] = GGauge , [GGauge,GGauge] = 0 ,

↓
[GGauge,GGauge] = C ,

Central charge C allows a definition of ‘gauge-invariant’ Lorentz generators such that

[GPoincaré,GPoincaré] = GPoincaré , [GGauge,GPoincaré] = 0 ,

→ Gauge algebra completely decoupled form Poincaré

[arXiv: 2301.05989]

Further extended to spin-2: BMS4, BMS5, super-BMS4 etc.

[arXiv: 2211.10941 and arXiv:2305.05436]

Can we find similar decoupling at I+ or in the front form? Does this happen only at i0?

40


