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texture images
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Scope of talk: image understanding

e How do we represent image data 7

e Is it possible to model natural images mathematically 7

- Can we generate texture images using machines 7

- How to understand images from physical models 7

e Given a large amount of data, how can we process them 7

Mathematics Computer science

—multi-scale analysis —machine learnmg
—stochastic geometry —parallel computing

—statistics /

Physics and Signal processing

—texture

—turbulence
—denoising




Texture synthesis problem  Julesz, 1962

e Textures are spatially homogeneous images, consisting of sim-
ilar patterns forming a coherent ensemble.
Texture Synthesis




Turbulence modeling

Can we characterize coherent structures in turbulent flows?

e Simulate fluid vorticity by PDE models (Navier-Stokes)

e Use texture models to synthesize vorticity (images)




Turbulence modeling

Can we characterize coherent structures in turbulent flows?

e Simulate fluid vorticity by PDE models (Navier-Stokes)

e Use texture models to synthesize vorticity (images)

Texture models can capture geometric information in images, why?

4]35




e Multi-scale models for texture synthesis

- Framework: maximum-entropy models
- Review of multi-scale approach: wavelet vs. deep learning

- Main result: phase harmonic covariance model

e Texture models and stochastic geometry

- Point process models and topological data analysis
e Texture models and cosmology

- From synthesis to denoising problem

e Texture style transfer and relation to Al




Maximum-entropy model

e Maximize the entropy of model p under moment constraints

max; Entropy(p) s.t. Epop(P(2)) = Epops(P(2))
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Maximum-entropy model

e Maximize the entropy of model p under moment constraints
max; Entropy(p) s.t. Epop(P(2)) = Epops(P(2))
e Dual solution: Gibbs distribution
p(x) = 7~ le N ®(@) d(x) € R
e Evaluation: compare similarity between samples of p and p
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Maximum-entropy model

e Maximize the entropy of model p under moment constraints

max; Entropy(p) s.t. Epop(P(2)) = Epops(P(2))

e Dual solution: Gibbs distribution
plz) = Z te A 2@  P(z) e RY
e Evaluation: compare similarity between samples of p and p

" Ay :; ‘f o "‘:',E Sy'n,theSZS: Sa’mple flr‘om p

e Key question: 1. how to specify ® : R — R? so that D~ p?
2. draw samples from p when d is large




Choice of moments

Large amount of ® do not always produce similar samples

Synthesis |

d' =6 x 10% huet g

®: 2nd-order moments (covariance between pixel values)




Choice of moments

Large amount of ® do not always produce similar samples

®: 2nd-order moments (covariance between pixel values)

= Problem: p is a Gaussian distribution, but p is not




Capture non-Gaussian information

e Goal: Specify ® to capture info. beyond 2nd order moments

2nd order moments  x(u) is pixel value at position u
¥ = (st =)

u—T

higher order moments (e.g. 3rd order)

O(z) = (w(w)r(u —71)2(w — 72) by 7,

Problem: estimation variance of E ., (®(z))

U
| |
T2 T1

U — 79 u—1m1T




Capture non-Gaussian information

e Goal: Specify ® to capture info. beyond 2nd order moments

2nd order moments  x(u) is pixel value at position u
¥ = (st =)

u—T

higher order moments (e.g. 3rd order)

; u . b(z) = {z(w)x(u—m)x(v—72)}r -

- w7, ~Problem: estimation variance of Eqp(®(z))

e State-of-the-art: Wavelet-based vs. Deep-learning based &

Idea : capture 1st and 2nd order moments in a transform domain

= non-Gaussian info. without too large variance




Wavelet and deep learning, 1989

S. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
Y. LeCun et al. Backpropagation applied to handwritten zip code recognition




Wavelet and deep learning, 1989

S. Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation
Y. LeCun et al. Backpropagation applied to handwritten zip code recognition

e Decompose images into multi-scale using self-similar filters
e Image recognition using a cascade of learnt filters

10 output units

fully connected
~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2
1? x 16=192 H2.1
hidden units

~ 40,000 links
1 from 12 kernels
5x5x8
layer H1
12 x 64 = 768
hidden units

H1.1
~20,000 links
from 12 kernels

5x5

256 input units

(b)

Fig. 17. (a)J. Beck textures: only the left texture is preattentively discri-
minable by a human observer. (b) These images show the absolute value
of the wavelet coeflicients of image (a). computed on three resolution
levels. The left texture can be discriminated with a first-order statistical
analysis of the detail signals amplitude. The two other textures can not Figure 3 Log mean squared error (MSE) (top) and raw error rate (bottom)
be discriminated with such a technic, versus number of training passes




Two cultures in data science

L. Breiman, 2001

e There are two cultures in the use of statistical modeling
to reach conclusions from data.

- One assumes that the data are generated by a given
stochastic data model. = Simple world

- The other uses algorithmic models and treats the data

mechanism as unknown. = Complex world
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- The other uses algorithmic models and treats the data
mechanism as unknown. = Complex world

e If our goal as a field is to use data to solve problems, then
we need to move away from exclusive dependence on data
models and adopt a more diverse set of tools.

Statistics, Signal processing = Machine learning (ML)




Two cultures in data science

L. Breiman, 2001

e There are two cultures in the use of statistical modeling
to reach conclusions from data.

- One assumes that the data are generated by a given
stochastic data model. = Simple world

- The other uses algorithmic models and treats the data
mechanism as unknown. = Complex world

e If our goal as a field is to use data to solve problems, then
we need to move away from exclusive dependence on data
models and adopt a more diverse set of tools.

Statistics, Signal processing = Machine learning (ML)

Challenge: build statistical models of complex data




Texture synthesis problem

Can we model parts of complex data?
Texture Synthesis




Wavelet-based texture model

PS: Portilla and Simoncelli (2000)
e Idea: Take 1st and 2nd order moments in a wavelet domain

e Wavelet transtform: seperate x into multiple scales

iL'*‘U’),.'n.
R - )

x e Complex wavelet
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® ), 9: scaled and
rotated from
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PS: Portilla and Simoncelli (2000)
e Idea: Take 1st and 2nd order moments in a wavelet domain

e Wavelet transtform: seperate x into multiple scales

I % ‘l{f)_;.',n.

x e Complex wavelet
— R —

® ), 9: scaled and
rotated from

angle

respect invariance of p (translation, rotational, scaling)

®: capture multi-scale angular interactions




Wavelet-based texture model

PS: Portilla and Simoncelli (2000)
e Idea: Take 1st and 2nd order moments in a wavelet domain

e Wavelet transtform: seperate x into multiple scales

I % ‘l{f)_;.',n.

x e Complex wavelet

=B

® ), 9: scaled and l )

!I( 'f/

rotated from
W\
Mz=x
e

®: capture multi-scale angular interactions angl

respect invariance of p (translation, rotational, scaling)

e Connection with convolutional neural network (CNN)
Conv2d(z, Real part of {1j0};0))
Image T < >Non—linearity
Conv2d(z, Imag part of {15} (;.0))

12 /35




Deep learning based texture model

VGG: Gatys et al. (2015)
e Idea: Take 1st and 2nd order moments in CNN layers

CNN: Image x — Conv2d(x, Filters;) — Non—linearity1—|

—»Conv2d(x, Filtersy) — Non-linearity, — Other layers ...




Deep learning based texture model

VGG: Gatys et al. (2015)
e Idea: Take 1st and 2nd order moments in CNN layers

CNN: Imafe r — Conv2d(z, Filters;) — Non—linearitle

Conv2d(x, Filterss) — Non-linearity, — Other layers ...

e Synthesis comparison PS

| -

VGG

d=6 x 10*
dps = 0.3 x 10*

Vorticity

PS images:

Texture less coherent



Understand deep learning models

RF': Ustyuzhaninov et al., 2017
Deep learning (VGG) performs better by using a large d’

Question: What it takes to generate natural textures?
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Question: What it takes to generate natural textures?

e To simplify VGG, RF model is proposed using 1-layer CNIN
O(x) = {Cov(p(x + Pa(w)), p(z * ha(u — 7)) fax -

p(a) = max(a,0): rectifier non-linearity {¥x}r: multi-scale random filters




Understand deep learning models

RF': Ustyuzhaninov et al., 2017
Deep learning (VGG) performs better by using a large d’

Question: What it takes to generate natural textures?
e To simplify VGG, RF model is proposed using 1-layer CNIN
O(x) = {Cov(p(z + a(u)), plx * ha(uw — 7)) fax 7

p(a) = max(a,0): rectifier non-linearity {¥x}r: multi-scale random filters

Texture (d = 65k) RF(d = 525k)




Wavelet vs. deep learning model

Question: What is in common between PS and RF model?
Can we bridge the gap between PS and VGG/RF model?




Wavelet vs. deep learning model

Question: What is in common between PS and RF model?
Can we bridge the gap between PS and VGG/RF model?

e Important differences between RF and PS models

- ReLLU vs. modulus non-linearity

- Choice of convolutional filters
PS model uses complex wavelet ¥ (u), A = (4, 0)

RF model uses real and random filters (¢ (u) ~ i.i.d. Gaussian)

Mallat, Zhang, Gaspar 2020
Zhang, Mallat 2021
Brochard, Zhang, Mallat 2022




Rectifier wavelet covariance
Mallat, Zhang, Gaspar 2020

e Propose a generalized rectifier with phase a € [0, 27]

pa(z) = p(Real(e'®%)),z complex number

rectifier: p(a) = max(a,0)




Rectifier wavelet covariance
Mallat, Zhang, Gaspar 2020

e Propose a generalized rectifier with phase a € [0, 27]

pa(z) = p(Real(e'®%)),z complex number

rectifier: p(a) = max(a,0) Brochard, Zhang, Mallat 2022

e Wavelet rectifier covariance with spatial shift 7
®(x) ~ {Cov(pa(x * hr(w)), po (27 * Pr (1)) Fa,ar AN, 7

po: generalized rectifier {4, }: complex wavelet filters

. T . X7 Capture correlations between
U ’IL\
W7 palxxipra(u)) and pos (z* Pa (u — 7))




Relation with phase harmonics

e Fourier transform of p, along a: phase harmonics

ikphase(z)

pa(2) = p(Real(2)) b [2]F = |2]e
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e Fourier transform of p, along a: phase harmonics

pa(2) = p(Real(c*2)) <mmp [2]F = |2]e

ikphase(z)
dual

e Generalize the classical Portilla & Simoncelli (2000) model

Cov/(

2 ()], [or xn (w)]F)

-PS moments: k=k"=0,1and k=1,k' =2

Capture information beyond 2nd order statistics (k = k' = 1)




Relation with phase harmonics

e Fourier transform of p, along a: phase harmonics

pa(2) = p(Real(c*2)) <mmp [2]F = |2]e

ikphase(z)
dual

e Generalize the classical Portilla & Simoncelli (2000) model

Cov/(

2 ()], [or xn (w)]F)

-PS moments: k=k"=0,1and k=1,k' =2

Capture information beyond 2nd order statistics (k = k' = 1)

e Phase harmonic covariance model (rectifier form)

Cov(pa(z *Pr(u)), par (X7 * hr (uw)))

= Unify PS

and RF model (using multi-scale filters)



Memorization issues: lack diversity

e Number of moments d’': quality/diversity trade-off
Texture(65k)  I'g(3.5k) ['as(35k) 'y (142k)

L4 - L

Cov(pa (T * PA(1)), par(Tr * P (u)))  (
Increasing range: I'g C 1')y C I',




Choose the covariance sets

How to choose I'g, I'ys, I'r, of (A, N, a,a,7)7
e For the wavelets {¢Ya}, A= (4,0), X' = (§,6")
- Partial or Full scale interactions: |j — j'| < A, A € {1,J}

- Full angular interactions: V(6,6)
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e For the phase o and o/
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Choose the covariance sets

How to choose I'g, I'ys, I'r, of (A, N, a,a,7)7
e For the wavelets {¢Ya}, A= (4,0), X' = (§,6")
- Partial or Full scale interactions: |j — j'| < A, A € {1,J}

- Full angular interactions: V(6,6)

e For the phase o and o/

- Phase interactions: o« € A4, a0’ € Ay or o/ € Ay
- Four phases: Ay ={0,7/4,7/2,37/4}

- One phase: A; = {0} ['a(35k) : A= J,a € Ay
e For the spatial shift 7 : subsampled grid on R?
L=2 L=4 © . total 7: O(JL)
e 2.J " 97 large-scale interactions

[R— —




Proposed model

Texture (65k) PS(3k) RF(525k)  Ours(35k) VGG(177k)
- / . r 3 [ 'w.-
" 2L
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Extension to color textures

e Model color texture x = {2°}.=1 2 3 with RGB channels




Extension to color textures

e Model color texture x = {2°}.=1 2 3 with RGB channels

e Capture color coherence using cross-channel statistics
Cov(pa (e * ha(w)), par(Ter v % Pxr(w))) (e, ¢) € {1,2,3}7




Extension to color textures

e Model color texture z = {2°}.=1 2.3 with RGB channels

e Capture color coherence using cross-channel statistics

COV(IO& (ajc * ¢>\ (u))a Pa’ ($C’,T * wk’ (u))) (Cv C,) S {17 2, 3}2
(195k) _ PS(17k (525Kk) _ )




Extension to color textures

e Model color texture z = {2°}.=1 2.3 with RGB channels

e Capture color coherence using cross-channel statistics

Cov(pa (e * Pa(u)), par (Ter 7 % Par (1)) (c,¢) € {1,2,3}7
Texture(195k) PSl7k) RF (525k)  Ours(320k) VGG(177k)

Can we further reduce the number of moments7




Reduced color model

e Capture spatial statistics without color interactions
- If ¢ # ¢, choose only 7 =0
Original Ours(320k)  Reduced(113k)
Loty e R L




Reduced color model

e Capture spatial statistics without color interactions
- If ¢ # ¢, choose only 7 =0
Original Ours(320k)  Reduced(113k)
Loty e R L

pen: understand the reduced covariance set




From texture to point process

e Point process: random measure pt = » ;. ..;0z,, L €N

e Samples of point processes of various geometries
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From texture to point process

e Point process: random measure pt = » ;. ..;0z,, L €N

o Samples of point processes of various geometrles
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e With existing approaches in stochastic geometry, it is difficult
to model point process with complex geometries formed by
large number of particles




Particle gradient-descent model

With A. Brochard, B. Blaszczyszyn, S. Mallat
e Micro-canonical synthesis method for textures

- Given one observation z, synthesize & € R? such that
T ~ Uniform({Z : || ®(x) — ®(7)]| < €})

key (ergodic) assumption: ®(z) ~ E,.,®(x)
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Particle gradient-descent model

With A. Brochard, B. Blaszczyszyn, S. Mallat
e Micro-canonical synthesis method for textures

- Given one observation z, synthesize & € R? such that

T ~ Uniform({Z : || ®(x) — ®(7)]| < €})

key (ergodic) assumption: ®(z) ~ E,.,®(x)

o Idea: given p, syntheize particles {Z;} in i = > . dz, by

ming || K (u) — K(i1)||* using gradient descent

e Descriptor K : [—s, s]2*! — R? captures the geometry in p

- Capture geometry in the point process: K(u) ~E, (K (u))

17 py

- Convert 4 to an image p2 to use @
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Wavelet phase harmonic descriptors

e Capture multi-scale interactions between the particles, while
controlling explicitly the number of moments by the scales of
the structures to model.

1 >k
K0 = (45 [ s =) iz

(AR, AR T!)




Wavelet phase harmonic descriptors

e Capture multi-scale interactions between the particles, while
controlling explicitly the number of moments by the scales of
the structures to model.

1 >k
K0 = (45 [ s =) iz

(AR, AR T!)

- For = € [—s,5)%, pxx(z) = [uxr(2)]* — E([u* a(2)]*)

- The shift 7/ € [—s, s]* captures correlations along nearby edges in

- A= (j,0), j for the size of structures, 6 orientation /> .~ =%

YN
i without phase o a' JE
 harmonics in K (k=k'=1)
| = Importance of k, k" # 17
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Proposed model

Hard-core Poisson Cluster
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Topological data analysis

e Measure similarity between 1 and 4 based on topology
e Count connected components and holes in neighbor graphes
e Compute W5 distance matrix between persistent diagrams

.'/L]\
RIRE

H

H | i —_—

Image from BARCODES:
THE PERSISTENT TOPOLOGY OF DATA, 2007




Topological data analysis

e Measure similarity between 1 and 4 based on topology
e Count connected components and holes in neighbor graphes
e Compute W5 distance matrix between persistent diagrams
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MDS of distance matriz
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Image from BARCODES: — . . . . .
THE PERSISTENT TOPOLOGY OF DATA, 2007 ® Orginal ¢ GD+WPH W RSHNND




Texture models and cosmology

With E. Allys, F. Levrier, et al.
e Motivation: quantitative comparison between observational
and simulated data requires to characterise non-Gaussian pro-
cesses due to complex nonlinear physics
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characterises the random process p.




Texture models and cosmology

With E. Allys, F. Levrier, et al.
e Motivation: quantitative comparison between observational
and simulated data requires to characterise non-Gaussian pro-
cesses due to complex nonlinear physics

e Synthesis problem: Given one observation x, synthesize ¥
such that ®(z) ~ ®(z). If Z similar to various x ~ p, then ®
characterises the random process p.

e Reduced wavelet scattering moments: Reduce the dimension
of ® using physical intuitions (seperate scales and angles)

C.8. (I)j1,j2,91,92 (x) = log HCB * ¢j1,91 ’ * ¢j2,92 H
~ Zp (I)./ihja,p(x)f@l»@%P

The dimension of ® is reduced using ®" with small set for p




Reduced wavelet scattering

e On column density map from magnetohydrodynamics

log ||z * 1, 0, * Vjy.0, =
27T

/ /
27-‘- e 27‘- Tre
(I);l g2 amisol (ZU) COS( © (9 9§1 JJ;))) + (Dj17j2,an’i802 (513) COS( Q) (9 951 JJ;)))
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Reduced wavelet scattering

e On column density map from magnetohydrodynamics

log ||z * ), 6, | * 1j,.0,] =

2T
(I);l’h""‘g()l( ) ™ (I)./71,J2,2802(x) COS( ) ( 1 92))4‘
2 re 2 re
(1)31 J2,anis0l (33) COS(%(@ 9§1 JJ;))) + ¢;17j2,ani802 (513) COS(g(H 851 JJ;)))
@ La5 I ' il i

I | I M|
I 1

Normalized
residuals
=

|
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960 coefficients in ® are fitted with 75 Coefﬁments d’ << d




Texture models and cosmology

e Denoising problem: let y = ™ + ¢* with unknown noise €*,
can we recover xr* from y?
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e Denoising problem: let y = ™ + ¢* with unknown noise €*,
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can we recover r* from y- B. Blancard, E. Allys et al. 2021

e Idea: Find x such that y and x + ¢; is similar for random ¢;
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Texture models and cosmology

e Denoising problem: let y = ™ + ¢* with unknown noise €*,

. ?
can we recover r* from y- B. Blancard, E. Allys et al. 2021

e Idea: Find x such that y and = + ¢; is similar for random ¢;
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Conclusion

e Propose wavelet phase harmonic covariance for texture
synthesis (generalizable to turbulence, point process)

- Bridge the gap between wavelet-based models and
CNN based models for high-quality and diverse synthesis

- Show quality and diversity trade-off through covariance sets

- Topological data analysis reveals strong connections with geometry

e We use texture models to analyze low-dimensional structures
of data and to solve denoising problem in cosmology.




Conclusion

e Propose wavelet phase harmonic covariance for texture
synthesis (generalizable to turbulence, point process)

- Bridge the gap between wavelet-based models and
CNN based models for high-quality and diverse synthesis

- Show quality and diversity trade-off through covariance sets

- Topological data analysis reveals strong connections with geometry

e We use texture models to analyze low-dimensional structures
of data and to solve denoising problem in cosmology.

e Future directions:

- Understand better the mathematics behind these models (Math)
- Relate to physical models of turbulence (Math/Physics)
- Relate to generative models of natural images (ML /SP)

- Build large-scale models using parallel computing (ML /CS)
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