Coverage of astronomical datasets

Summer School "Geometry and data"

Sébastien Derriere sebastien.derriere@astro.unistra.fr

Astronomical observations

- Spherical coordinates
- Often, distances are not known

□ JWST image

- Neptune & satellites
- Stars
- Galaxies

Astronomical images

- 2D spatial sampling (field of view)
- ... but also
 - Time sampling (exposure time)
 - Frequency sampling (wavelength/energy)
 - Limits in sensitivity

Astronomical images

 Shape can be complex ! (HST WFPC2)

Astronomical images

• Mosaics of detectors (MEGACAM, CFHT)

	8		^	B	1	л в	1	A	8	3	•	B	4	•	B	5	•	8	6	~	8	7		B	8	•		
в и 36	. 8	-		B	10	• •	1	1	8	12	^	8	13	^	B	14	^	8	15	^	8	16	^	B	17	^	8	37
38 A E		1	8 B	A	19	ва	2	0		21	в	~	22	в	^	23	8	^	24	в	^	25	в	^	26	в		39
	A .	2	7	A	28	8 4	2	9	A.	30	8	A	31	8	^	32	8	A .	33	8	A	34	8	A .	35	8		

Sky surveys

- Collections of images, covering a fraction of the sky
- How to provide seamless access to image sky surveys ?
- How do you describe the spatial coverage ?
 - Shape?
 - Sky fraction ?

Sky surveys : all-sky view and coverage ?

- Describe complex regions on the celestial sphere
- Compare, combine coverage of several datasets (intersect, ...)
- Global properties
 - Sky fraction (full-sky, ...)
 - Shape (multiple regions, gaps, holes, ...)

Sky partitions : several schemes

- Spherical-cubic projection, quad-cubes
 - 6 faces of a cube, subdivided recursively into 4 squares
- HTM : Hierarchical Triangular Mesh
 - 8 triangles, subdivided recursively into 4 triangles

Sky partition : HEALPIX

- HEALPix (Gorski et al. 2005)
 - 12 quadrilateral pixels
 - 2x2 division at each level
 - Equal area, Iso-latitude
- All these partitions rely on quad-trees
 - Each cell is subdivided into 4 children, recursively

HiPS = Hierarchical Progressive Surveys

 Mosaic of HEALPix tiles (HEALPix pixel geometry)

(Fernique et al. 2015)

HiPS = Hierarchical Progressive Surveys

□ HiPS as a standard

• International Virtual Observatory alliance standard – ivoa.net

□ HiPS : huge success

- Hierachical Progressive Survey
 - "The more you zoom in on a particular area, the more details show up"
- Multi-resolution HEALPix data structure for Images, Catalogues, 3-dimensional data cubes, ...
- Conserves scientific data properties alongside visualisation considerations
- No databases or servers, just HTTP

A few examples in Aladin

Aladin = sky atlas developed by CDS in Strasbourg.

Acces to 1200+ surveys !

http://aladin.cds.unistra.fr/hips/

020 Université de Strasbourg/CNRS - developed by CDS, ALL RIGHT RESERVE

432 sel / 20200 src 696Mo

MOCs

• Multi-Order Coverage map

"Combine sky regions in few milliseconds"

- A simple and efficient method to specify any kind of sky regions
- Based on HEALPix tessellation
- Existing libraries: Java, C, python
- Used in VO tools (Aladin, TOPcat, ...)

□ What is a MOC ?

 How to describe the spatial coverage of HST observations around the Andromeda galaxy ?

□ What is a MOC ?

• "Just" the list of HEALPix cell numbers covering a region

- 4 adjacent cells are replaced by the parent, recursively \rightarrow intrinsic compression
- Store as a FITS table (or JSON)

□ What is MOC ?

• MOC accuracy depends of the MOC **order** = the smallest HEALPix cell level used in the MOC

MOC standard

A few examples in Aladin

Very easy to perform arithmetic operations between MOCs : intersections, union, ...

c) 2020 Université de Strasbourg/CNRS - developed by CDS, ALL RIGHT RESERVED

432 sel / 20200 src 696Mo

MOC 2.0

- Extension to describe not only space coverage, but also time coverage : ST-MOC.
- I'll come back to this at the end with an example (it time allows) !

What about datasets coverage ?

- MOCs seem to address the problem, but...
- Can I get general coverage properties ?
 - e.g. sky_fraction [0..1]

(and attach these metadata to the dataset to facilitate filtering in discovery)

- What is the optimal HEALPix order ?
- What about coverage of astronomical catalogues ?

Astronomical catalogues

• Extraction of a list of sources from images

Bertin et al. 1996

Optimal HiPS & MOC order ?

k	$N_{\rm side} = 2^k$	$N_{\rm pix}$	$\theta_{\rm pix}$	$k_{\rm tile,512}$	$N_{\rm tile,512}$	$\theta_{\rm tile,512}$
0	1	12	58°.6			
1	2	48	29.3			
2	4	192	14°.7			
3	8	768	7°.33			
4	16	3072	3°.66			
5	32	12288	1°.83			
6	64	49 152	55'.0			
7	128	196 608	27:5			
8	256	786 432	13'7			
9	512	3 145 728	6, 87	0	12	58°.6
10	1024	12 582 912	3:44	1	48	29°.3
11	2048	50 331 648	1,72	2	192	14°.7
12	4096	201 326 592	51",5	3	768	7°.33
13	8192	805 306 368	258	4	3072	3°.66
14	2^{14}	3.22×10^{9}	12.'9	5	12 288	1°83
15	2^{15}	1.29×10^{10}	6.'44	6	49 152	55'0
16	2^{16}	5.15×10^{10}	3.22	7	196 608	27:5
17	2^{17}	2.06×10^{11}	161	8	786432	13'7
18	2^{18}	8.25×10^{11}	0.'81	9	3 145 728	6:87
19	219	3.30×10^{12}	0.40	10	12 582 912	3:44
20	2^{20}	1.32×10^{13}	0. 20	11	50 331 648	1:72
21	2^{21}	5.28×10^{13}	0.''10	12	201 326 592	51".5
22	222	2.11×10^{14}	50.3 mas	13	805 306 368	25''.8
23	2 ²³	8.44×10^{14}	25.1 mas	14	3.22×10^{9}	12".9
24	2^{24}	3.38×10^{15}	12.6 mas	15	1.29×10^{10}	6.44
25	2^{25}	1.35×10^{16}	6.29 mas	16	5.15×10^{10}	322
26	2^{26}	5.40×10^{16}	3.15 mas	17	2.06×10^{11}	161

Optimal HiPS & MOC order ?

- MOCs can be used to estimate the sky coverage, by adding the areas of all HEALPix pixels.
- The total MOC area is overestimating the true area, because pixels spread on the perimeter.

Optimal HiPS & MOC order ?

• The highest the order of the MOC, the better the precision.

- The area of one HEALPix pixel at order k is $\Omega_{pix} = (\Pi/3) 4^{-k}$
- The estimated area from a MOC at order k is related to the true area by a relation of the form $S_k = S_{true}(1 + L \cdot 2^{-k})$ where L is a parameter related to the perimeter of the MOC
- More complex MOCs will have larger values of L
- We define $\mathcal{L} = \log(L)$ as the lacunarity of the dataset

□ Lacunarity

• Lacunarity (Latin lacuna, meaning "gap") was introduced by Mandelbrot to describe the texture of fractals

- Extended (see for example Dong (2000)) to describe the distribution of gap sizes in geometric objects :
 - homogeneous objects have low lacunarity
 - heterogeneous objects have high lacunarity

Example on spherical cap

• Fitting the formula $S_k = S_{true}(1 + L \cdot 2^{-k})$ over orders k=7 to 10 gives an estimated $S_{true} = 704.5 \text{ deg}^2$ (exact area S=702.8 deg²)

Coverage of catalogues ?!

- More difficult than for image surveys.
- Beware of oversampling !!
 - If the density of sources per HEALPix pixel becomes too low (at high orders k), empty pixels cause an underestimation of the area.
- At very high orders k, asymptotic limit (1 source per pixel)
 S_k=N(Π/3) 4^{-k}
 with N the number of catalogue sources

Example

- CDS/P/MAMA/posse
- S_{true} = 12358 deg2

Example

- CDS/P/ISOPHOT/170
- S_{true} = 7252 deg2
 £ = 2.896

Example

- CDS/P/HST/V
- S_{true} = 5.745 deg2

Example for catalogues

- CDS/I/273A/erlcat (de Vegt et al., 2001)
- N=89 422 sources
- S_{true} = 219.5 deg2
- <u></u>*L* = 2.6

Example for catalogues

- CDS/I/335/table1 (Men et al., 2016)
- N=86 467 sources
- S_{true} = 1984 deg2
- <u>£</u> = 0.683

Summary

- MOC offer a convenient description of the coverage of astronomical image surveys or catalogues
- Global parameters such as total area (sky fraction) or lacunarity can provide additional insight on the data distribution on the sky
- Combining spatial MOCs with time (or frequency) coverage enables to easily solve difficult problems